4.7 Article

Investigating the Effect of Imputed Structural Variants from Whole-Genome Sequence on Genome-Wide Association and Genomic Prediction in Dairy Cattle

Journal

ANIMALS
Volume 11, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/ani11020541

Keywords

genome sequence; structural variants; accuracy; genome-wide association studies; genomic prediction; genomic selection

Funding

  1. Agriculture Victoria
  2. Gardiner Foundation through the DairyBio initiative
  3. Gardiner Foundation through La Trobe University
  4. Dairy Australia

Ask authors/readers for more resources

Structural variants are large DNA segments that can explain only a small percentage of phenotypic variation in dairy cattle traits. While some structural variants showed significant association with production traits, their inclusion in genomic prediction models did not significantly improve accuracy. This suggests that SNP markers remain more reliable for predicting dairy cattle traits than structural variants.
Simple Summary Structural variants are large changes to the DNA sequences that differ from individual to individual. We discovered and quality-controlled a set of 24,908 structural variants and used a technique called imputation to infer them into 35,588 Holstein and Jersey cattle. We then investigated whether the structural variants affected key dairy cattle traits such as milk production, fertility and overall conformation. Structural variants explained generally less than 10 percent of the phenotypic variation in these traits. Four of the structural variants were significantly associated with dairy cattle production traits. However, the inclusion of the structural variants in the genomic prediction model did not increase genomic prediction accuracy. Structural variations (SVs) are large DNA segments of deletions, duplications, copy number variations, inversions and translocations in a re-sequenced genome compared to a reference genome. They have been found to be associated with several complex traits in dairy cattle and could potentially help to improve genomic prediction accuracy of dairy traits. Imputation of SVs was performed in individuals genotyped with single-nucleotide polymorphism (SNP) panels without the expense of sequencing them. In this study, we generated 24,908 high-quality SVs in a total of 478 whole-genome sequenced Holstein and Jersey cattle. We imputed 4489 SVs with R2 > 0.5 into 35,568 Holstein and Jersey dairy cattle with 578,999 SNPs with two pipelines, FImpute and Eagle2.3-Minimac3. Genome-wide association studies for production, fertility and overall type with these 4489 SVs revealed four significant SVs, of which two were highly linked to significant SNP. We also estimated the variance components for SNP and SV models for these traits using genomic best linear unbiased prediction (GBLUP). Furthermore, we assessed the effect on genomic prediction accuracy of adding SVs to GBLUP models. The estimated percentage of genetic variance captured by SVs for production traits was up to 4.57% for milk yield in bulls and 3.53% for protein yield in cows. Finally, no consistent increase in genomic prediction accuracy was observed when including SVs in GBLUP.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available