4.8 Article

TiO2 Nanotubes with Open Channels as Deactivation-Resistant Photocatalyst for the Degradation of Volatile Organic Compounds

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 50, Issue 5, Pages 2556-2563

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.5b05418

Keywords

-

Funding

  1. Global Research Laboratory program - Korea government (MSIP) through NRF [2014K1A1A2041044]
  2. National Research Foundation of Korea [22A20130012323, 2014K1A1A2041044] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

We synthesized ordered TiO2 nanotubes (TNT) and compared their photocatalytic activity with that of TiO2 nanoparticles (TNP) film during the repeated cycles of photocatalytic degradation of gaseous toluene and acetaldehyde to test the durability of TNT as an air-purifying photocatalyst. The photocatalytic activity of TNT showed only moderate reduction after the five cycles of toluene degradation, whereas TNP underwent rapid deactivation as the photocatalysis cycles were repeated. Dynamic SIMS analysis showed that carbonaceous deposits were formed on the surface of TNP during the photocatalytic degradation of toluene, which implies that the photocatalyst deactivation should be ascribed to the accumulation of recalcitrant degradation intermediates (carbonaceous residues). In more oxidizing atmosphere (100% O-2 under which less carbonaceous residues should form), the photocatalytic activity of TNP still decreased with repeating cycles of toluene degradation, whereas TNT showed no sign of deactivation. Because TNT has a highly ordered open channel structure, O-2 molecules can be more easily supplied to the active sites with less mass transfer limitation, which subsequently hinders the accumulation of carbonaceous residues on TNT surface. Contrary to the case of toluene degradation, both TNT and TNP did not exhibit any significant deactivation during the photocatalytic degradation of acetaldehyde, because the generation of recalcitrant intermediates from acetaldehyde degradation is insignificant. The structural characteristics of TNT is highly advantageous in preventing the catalyst deactivation during the photocatalytic degradation of aromatic compounds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available