4.8 Article

A unified vegetation index for quantifying the terrestrial biosphere

Journal

SCIENCE ADVANCES
Volume 7, Issue 9, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.abc7447

Keywords

-

Funding

  1. European Research Council (ERC) [647423]
  2. EUMETSAT Satellite Application Facility on Land Surface Analysis (LSA-SAF)
  3. NASA Earth Observing System MODIS project [NNX08AG87A]
  4. NASA ABoVE [NNX15AT78A]
  5. Emmy Noether Programme (GlobFluo project) of the German Research Foundation [GU 1276/1-1]
  6. European Union [776186, 776810]

Ask authors/readers for more resources

This study generalized commonly used vegetation indices by exploiting higher-order relations between spectral channels, resulting in increased sensitivity to vegetation physiological and biophysical parameters. The nonlinear NDVI consistently improved accuracy in monitoring key parameters, suggesting potential for more precise measurements of terrestrial carbon dynamics.
Empirical vegetation indices derived from spectral reflectance data are widely used in remote sensing of the biosphere, as they represent robust proxies for canopy structure, leaf pigment content, and, subsequently, plant photosynthetic potential. Here, we generalize the broad family of commonly used vegetation indices by exploiting all higher-order relations between the spectral channels involved. This results in a higher sensitivity to vegetation biophysical and physiological parameters. The presented nonlinear generalization of the celebrated normalized difference vegetation index (NDVI) consistently improves accuracy in monitoring key parameters, such as leaf area index, gross primary productivity, and sun-induced chlorophyll fluorescence. Results suggest that the statistical approach maximally exploits the spectral information and addresses long-standing problems in satellite Earth Observation of the terrestrial biosphere. The nonlinear NDVI will allow more accurate measures of terrestrial carbon source/sink dynamics and potentials for stabilizing atmospheric CO2 and mitigating global climate change.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available