4.8 Article

Synthesis of wafer-scale ultrathin graphdiyne for flexible optoelectronic memory with over 256 storage levels

Journal

CHEM
Volume 7, Issue 5, Pages -

Publisher

CELL PRESS
DOI: 10.1016/j.chempr.2021.01.021

Keywords

-

Funding

  1. Beijing National Laboratory for Molecular Sciences [BNLMS-CXTD-202001]
  2. Ministry of Science and Technology of China [2016YFA0200100, 2018YFA0703502]
  3. National Natural Science Foundation of China [52021006, 51720105003, 21790052, 51802220, 21974004]
  4. Natural Science Foundation of Tianjin City [19JCYBJC17300]

Ask authors/readers for more resources

A new strategy for preparing GDY film was proposed, leading to the successful fabrication of a GDY optoelectronic memory with multi-bit storage capability, showing excellent charge storage and photoresponse. The device exhibits over 256 distinct storage levels, with signal-to-noise ratios greater than 100, and demonstrates robust bending stability.
Two-dimensional (2D) graphdiyne (GDY) is a promising floating-gate material for flexible optoelectronic flash memory owing to its fascinating electrical and optical properties. However, research in GDY-based flash memory is still in its infancy owing to the huge challenge in the synthesis of large-area and ultrathin GDY films with high quality and uniformity. Here, an electric double-layer-confined strategy is proposed to synthesize a wafer-scale GDY film with thickness of 1 nm. Then, a two-terminal top-floating-gated optoelectronic memory with multibit storage capability is investigated using GDY as a photoresponsive top-floating gate. Benefiting from the excellent charge storage capability and high photoresponse of GDY, this device exhibits over 256 distinct storage levels (8 bits) with signal-to-noise ratios larger than 100. Moreover, the fully 2D material and two-terminal architecture endows the device with robust bending stability for over 1,000 bending circles, paving the way to develop wearable electronics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available