4.8 Article

Differential Effects of High Atmospheric N and S Deposition on Bog Plant/Lichen Tissue and Porewater Chemistry across the Athabasca Oil Sands Region

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 50, Issue 23, Pages 12630-12640

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.6b03109

Keywords

-

Funding

  1. Wood Buffalo Environmental Association, Fort McMurray, Alberta, Canada [T105-13, 06-CO-11272172-030, 11-CO-11272172-041, 16-CO-11272139-036]
  2. Syncrude Canada [4410032979]
  3. Austrian Science Fund (FWF) [T105] Funding Source: Austrian Science Fund (FWF)

Ask authors/readers for more resources

Oil extraction and development activities in the Athabasca Oil Sands Region of northern Alberta, Canada, release NOx, SOx, and NHy to the atmosphere, ultimately resulting in increasing N and S inputs to surrounding ecosystems through atmospheric deposition. Peatlands are a major feature of the northern Alberta landscape, with bogs covering 6-10% of the land area, and fens covering 21-53%. Bulk deposition of NH4+-N, NO3--N, dissolved inorganic N (DIN), and SO42--S, was quantified using ion-exchange resin collectors deployed at 23 locations, over 1-6 years. The results reveal maximum N and S deposition of 9.3 and 12.0 kg ha(-1) yr(-1), respectively, near the oil sands industrial center (the midpoint between the Syncrude and Suncor upgrader stacks), decreasing with distance to a background deposition of 0.9 and 1.1 kg ha(-1) yr(-1), respectively. To assess potential influences of high N and S deposition on bogs, we quantified N and S concentrations in tissues of two Sphagnum species, two lichen species, and four vascular plant species, as well as surface porewater concentrations of H+, NH4+-N, NO3--N, SO42--S and dissolved organic N in 19 ombrotrophic bogs, distributed across a 3255 km(2) sampling area surrounding the oil sands industrial center. The two lichen species (Evernia mesomorpha and Cladonia mitis), two vascular plant species (Rhododendron groenlandicum and Picea mariana), and to a lesser extent one moss (Sphagnum fuscum), showed patterns of tissue N and S concentrations that were (1) highest near the oil sands industrial center and (2) positively correlated with bulk deposition of N or S. Concentrations of porewater 11 and SO42--S, but not of NH4+ N, NO3--N, DIN, or dissolved inorganic N, also were higher near the oil sands industrial center than at more distant locations. The oil sands region of northern Alberta is remote, with few roads, posing challenges to the monitoring of oil sands-related N and S deposition. Quantification of N and S concentrations in bog plant/lichen tissues and porewaters may serve as a monitoring tool to assess both the local intensity and the spatial extent of bulk N and S deposition, and as harbingers of potential shifts in ecosystem structure and function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available