4.6 Article

Cavity Formation during Asymmetric Water Entry of Rigid Bodies

Journal

APPLIED SCIENCES-BASEL
Volume 11, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/app11052029

Keywords

slamming; fluid-structure interaction; fluid detachment; cavitation

Ask authors/readers for more resources

This study numerically evaluates the impact of advancing velocity on the water entry of rigid wedges, investigating the pressure evolution and fluid detachment at the fluid-structure interface. The results show that entry depth, asymmetry, and entry velocity significantly influence the tilting moment generated during water entry.
This work numerically evaluates the role of advancing velocity on the water entry of rigid wedges, highlighting its influence on the development of underpressure at the fluid-structure interface, which can eventually lead to fluid detachment or cavity formation, depending on the geometry. A coupled FEM-SPH numerical model is implemented within LS-DYNA, and three types of asymmetric impacts are treated: (I) symmetric wedges with horizontal velocity component, (II) asymmetric wedges with a pure vertical velocity component, and (III) asymmetric wedges with a horizontal velocity component. Particular attention is given to the evolution of the pressure at the fluid-structure interface and the onset of fluid detachment at the wedge tip and their effect on the rigid body dynamics. Results concerning the tilting moment generated during the water entry are presented, varying entry depth, asymmetry, and entry velocity. The presented results are important for the evaluation of the stability of the body during asymmetric slamming events.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available