4.8 Article

Modulating the Electrical and Mechanical Microenvironment to Guide Neuronal Stem Cell Differentiation

Journal

ADVANCED SCIENCE
Volume 8, Issue 7, Pages -

Publisher

WILEY
DOI: 10.1002/advs.202002112

Keywords

ciliary neurotrophic factor; conductive polymers; electrical stimulation; electrophysiology; graphene; cell scaffolds; stem cells

Funding

  1. NIH [K08NS089976]
  2. Stanford School of Medicine Dean's postdoctoral fellowship

Ask authors/readers for more resources

The use of a conductive graphene scaffold was shown to significantly accelerate the generation of human iPSC-derived neurons, with mechanical and electrical stimuli promoting their growth and maturation through different signaling pathways.
The application of induced pluripotent stem cells (iPSCs) in disease modeling and regenerative medicine can be limited by the prolonged times required for functional human neuronal differentiation and traditional 2D culture techniques. Here, a conductive graphene scaffold (CGS) to modulate mechanical and electrical signals to promote human iPSC-derived neurons is presented. The soft CGS with cortex-like stiffness (approximate to 3 kPa) and electrical stimulation (+/- 800 mV/100 Hz for 1 h) incurs a fivefold improvement in the rate (14d) of generating iPSC-derived neurons over some traditional protocols, with an increase in mature cellular markers and electrophysiological characteristics. Consistent with other culture conditions, it is found that the pro-neurogenic effects of mechanical and electrical stimuli rely on RhoA/ROCK signaling and de novo ciliary neurotrophic factor (CNTF) production respectively. Thus, the CGS system creates a combined physical and continuously modifiable, electrical niche to efficiently and quickly generate iPSC-derived neurons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available