4.6 Article

Molecular characteristic of treatment failure clinical isolates of Leishmania major

Journal

PEERJ
Volume 9, Issue -, Pages -

Publisher

PEERJ INC
DOI: 10.7717/peerj.10969

Keywords

Leishmania; Parasitology; Leishmaniasis; Clinical isolates; Minicircle kDNA; COXII; Treatment failure; Phylogenetic analysis; Gene expression

Funding

  1. ICG SB RAS budget grant [0259-2021-0014]
  2. Sechenov University
  3. Ministry of Education and Science of the Russian Federation [RFMEFI60819X0278]

Ask authors/readers for more resources

Leishmaniasis is a prevalent tropical disease caused by over 20 species of Leishmania. Cutaneous leishmaniasis is the most common form, with an annual 0.6-1 million new cases reported worldwide. Treatment failure is an increasing problem, and this study utilized phylogenetic analysis and gene expression analysis to assess the molecular characteristics of isolates and their association with drug response. The results showed that COXII and minicircle kDNA were suitable for identification and differentiation, with treatment failure isolates displaying lower AQP1 gene expression. Further research on other molecular mechanisms related to drug response is needed.
Background: Leishmaniasis is a prevalent tropical disease caused by more than 20 Leishmania species (Protozoa, Kinetoplastida and Trypanosomatidae). Among different clinical forms of the disease, cutaneous leishmaniasis is the most common form, with an annual 0.6-1 million new cases reported worldwide. This disease's standard treatment is pentavalent antimonial (Sb-V) that have been used successfully since the first half of the 20th century as a first-line drug. However, treatment failure is an increasing problem that is persistently reported from endemic areas. It is important to define and standardize tests for drug resistance in cutaneous leishmaniasis. SbV must be reduced to its trivalent active form (Sb-III). This reduction occurs within the host macrophage, and the resultant Sb-III enters amastigotes via the aquaglyceroporin1 (AQP1) membrane carrier. Overexpression of AQP1 results in hypersensitivity of the parasites to Sb-III, but resistant phenotypes accompany reduced expression, inactivation mutations, or deletion of AQP1. Hence, in this study, a phylogenetic analysis using barcode gene COXII and kDNA minicircle and expression analysis of AQP1 were performed in treatment failure isolates to assess the isolates' molecular characteristics and to verify possible association with drug response. Methods: Samples in this study were collected from patients with cutaneous leishmaniasis referred to the Diagnosis Laboratory Center in Isfahan Province, Iran, from October 2017 to December 2019. Among them, five isolates (code numbers 1-5) were categorized as treatment failures. The PCR amplification of barcode gene COXII and kDNA minicircle were done and subsequently analyzed using MEGA (10.0.5) to perform phylogenetics analysis of Treatment failures (TF) and Treatment response (TR) samples. Relative quantification of the AQP1 gene expression of TF and TR samples was assessed by real-time PCR. Results: All samples were classified as L. major. No amplification failure was observed in the cases of barcode gene COXII and kDNA minicircle amplification. Having excluded the sequences with complete homology using maximum parsimony with the Bootstrap 500 method, four major groups were detected to perform phylogenetic analysis using COXII. The phylogenetic analysis using the barcode target of minicircle showed that all five treatment failure isolates were grouped in a separate sub-clade. Conclusions: We concluded that the barcode gene COXII and the minicircle kDNA were suitable for identification, differentiation and phylogenetic analysis in treatment failure clinical isolates of Leishmania major. Also, AQP1 gene expression analyses showed that treatment failure isolates had less expression than TR isolates. The isolate with TF and overexpression of the AQP1 gene of other molecular mechanisms such as overexpression of ATP-binding cassette may be involved in the TR, such as overexpression of ATP-binding cassette which requires further research.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available