4.7 Article

Protein Adsorption at Nanorough Titanium Oxide Surfaces: The Importance of Surface Statistical Parameters beyond Surface Roughness

Journal

NANOMATERIALS
Volume 11, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/nano11020357

Keywords

surface topography; surface roughness; atomic force microscopy; ellipsometry; adsorption

Funding

  1. Deutsche Forschungsgemeinschaft DFG

Ask authors/readers for more resources

This study investigated the impact of surface topography on protein adsorption, finding linear correlations between the adsorption characteristics of different proteins and surface statistical parameters on nanorough surfaces. However, the dependence on different parameters varied for different proteins. The results demonstrate the importance of fully understanding surface morphology in protein adsorption and possibly also cell adhesion studies.
The nanoscale surface topography of biomaterials can have strong effects on protein adsorption. While there are numerous surface statistical parameters for the characterization of nanorough surfaces, none of them alone provides a complete description of surface morphology. Herein, a selection of nanorough titanium oxide surfaces has been fabricated with root-mean-square roughness (Sq) values below 2.7 nm but very different surface morphologies. The adsorption of the proteins myoglobin (MGB), bovine serum albumin (BSA), and thyroglobulin (TGL) at these surfaces was investigated in situ by ellipsometry to assess the importance of six of the most common surface statistical parameters. For BSA adsorption, both protein film thickness and time constant of adsorption were found to scale linearly with Sq s. For TGL, however, the same adsorption characteristics depend linearly on the surface skewness (Ssk), which we attribute to the rather extreme size of this protein. Finally, a mixed behavior is observed for MGB adsorption, showing different linear correlations with Sq and Ssk. These results demonstrate the importance of a thorough morphological characterization of the surfaces employed in protein adsorption and possibly also cell adhesion studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available