4.5 Article

Stretch Forming Behavior and Constitutive Equation of a Modified 5083 Alloy with High Mg Content at Elevated Temperatures

Journal

METALS
Volume 11, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/met11030410

Keywords

modified 5083 alloy; stretch forming behavior; tensile test; microstructure; constitutive equation

Funding

  1. Korea Institute of Industrial Technology

Ask authors/readers for more resources

The study focuses on the mechanical properties and microstructural changes of the high magnesium content New 5083M alloy during stretch forming. The results show that the 5083M alloy exhibits superior mechanical properties compared to the commercial 5083 alloy at high temperatures, but complex-shaped cavities that may affect mechanical properties appear under high temperature and low strain rate conditions.
For the purpose of applying a modified 5083 alloy (New 5083M alloy) with high Mg content in various automotive sheet parts, the stretch forming behavior of the 5083M alloy was studied in tensile mode at a wide range of processing conditions. The tensile tests were conducted by using a tensile test machine under the temperature ranges of 100-400 degrees C and the strain rate ranges of 0.001-1 s(-1). The test results showed that the 5083M alloy has superior mechanical properties to that of the commercial 5083 alloy at elevated temperatures. The microstructure before and after the stretch forming was analyzed using optical microscope (OM) equipped with a polarizing filter and electron backscattered diffraction (EBSD) unit. Deformed microstructure was observed under low temperature conditions and dynamic recrystallized microstructure under high temperature conditions. However, regardless of microstructure evolution, developed deformation textures were distributed in orientation distribution functions (ODF) images. In addition, at high temperature and low strain rate condition, complex shaped cavities which were detrimental to mechanical properties appeared at the grain boundary and grain triple junction. Based on the test results data, a constitutive equation predicting the deformation behavior of the 5083M alloy was derived. The calculated curves by the constitutive equation were compared with the measured curves by experiment and agreed well.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available