4.6 Article

Altered Cardiac Autonomic Regulation in Overweight and Obese Subjects: The Role of Age-and-Gender-Adjusted Statistical Indicators of Heart Rate Variability and Cardiac Baroreflex

Journal

FRONTIERS IN PHYSIOLOGY
Volume 11, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fphys.2020.567312

Keywords

sympathetic-parasympathetic balance; percentile rank transformation; life style; exploratory factor analysis; cardiovascular risk; non-parametric statistical inference

Categories

Ask authors/readers for more resources

The study found that obesity and overweight individuals exhibited signs of impaired cardiac autonomic regulation, with the impairment being more pronounced in the obesity group. This suggests a strong association between increased BMI and progressive impairments of cardiovascular autonomic regulation, particularly in relation to the pressure domain and overall autonomic nervous system performance.
In the context of functional determinants of cardiovascular risk, a simple excess in body weight, as indexed by a rise in body mass index (BMI), plays a significant, well-recognized causal role. Conversely, BMI reductions toward normal result in an improvement of risk. Obesity is associated with impaired cardiac autonomic regulation (CAR), through either vagal or sympathetic mechanisms, which could favor the tendency to foster hypertension. Here we study the changing properties of the relationship between increasing grades of BMI and CAR in a population of 756 healthy subjects (age 35.9 +/- 12.41 years, 37.4% males, 21.6% overweight, and 16% obese). Evaluation of CAR is based on autoregressive spectral analysis of short-term RR interval and systolic arterial pressure variability, from which a multitude of indices, treated overall as autonomic nervous system (ANS) proxies, is derived. Inspection of the study hypothesis that elevated BMI conditions associate significantly with alterations of CAR, independently of age and gender, is carried out using a mix of statistical transformations, exploratory factor analysis, non-parametric testing procedures, and graphical tools particularly well suited to address alterations of CAR as a disturbed process. In particular, to remove the effects of the inter-individual variability, deriving from components like age, gender or ethnicity, and to reduce the number of ANS proxies, we set up six age-and-gender-adjusted CAR indicators, corresponding to four ANS latent domains (oscillatory, amplitude, pressure, and pulse), cardiac baroreflex regulation, and autonomic nervous system index (ANSI). An impairment of the CAR indicators is overall evident in the overweight group and more marked in the obesity group. Empirical evidence is strong (9/9 concordant non-parametric test results) for pressure domain, almost strong (8/9) for ANSI, medium-strong for baroreflex (6/9) and pulse (7/9), weak for oscillatory (2/9) and amplitude (1/9) domains. In addition, the distribution of the CAR indicators corresponding to pressure, pulse, baroreflex, and ANSI is skewed toward the unfavorable abscissa extremity, particularly in the obese group. The significant association of increased BMI with progressive impairments of CAR regarding specifically the pressure domain and the overall ANS performance might underscore the strong hypertensive tendency observed in obesity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available