4.7 Article

Effects of riverine suspended particulate matter on the post-dredging increase in internal phosphorus loading across the sediment-water interface

Journal

ENVIRONMENTAL POLLUTION
Volume 211, Issue -, Pages 165-172

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2015.12.045

Keywords

Suspended particulate matter; Dredging; Internal phosphorus loading; Sediment-water interface; Lake Chaohu

Funding

  1. State Major Project for Water Pollution Control and Management [2012ZX07103-005]
  2. National Natural Science Foundation of China [51409241]

Ask authors/readers for more resources

Dredging is frequently used in the river mouths of eutrophic lakes to reduce internal phosphorus (P) loading from the sediment. However, the accumulation of P-adsorbed suspended particulate matter (SPM) from the inflowing rivers negatively affects the post-dredging sediment-water interface and ultimately increases internal P loading. Here, a 360-d experiment was carried out to investigate the influence of riverine SPM on the efficacy of dredging in reducing internal P loading. SPM was added to dredged and undredged sediments collected from the confluence area of Lake Chaohu. Several parameters related to internal P loading, including oxygen profile, soluble reactive P, and ferrous iron across the sediment-water interface, organic matter, alkaline phosphatase activity, and P fractions, were measured throughout the experimental period. The results showed that the P content (especially mobile P) in the sediment increased to the pre-dredging level with the accumulation of SPM in the dredged sediment. In addition, the P flux across the sediment-water interface increased with the accumulation of SPM. Several characteristics of SPM, including high organic matter content, mobile P, high activity of alkaline phosphatase, and high biological activity, were considered correlated with the post-dredging increase in internal P loading. Overall, this study showed that the heavily contaminated riverine SPM regulates the long-term efficacy of dredging as a nutrient management option in the confluence area. Management is needed to avoid or reduce this phenomenon during dredging projects of this nature. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available