4.8 Article

Hierarchical ZnO nanorod arrays grown on copper foam as an advanced three-dimensional skeleton for dendrite-free sodium metal anodes

Journal

NANO ENERGY
Volume 80, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.nanoen.2020.105563

Keywords

ZnO nanorod arrays; Cu foam; Sodiophilic; Na metal anode

Funding

  1. National Natural Science Foundation of China [31971614, 51674221]
  2. China Postdoctoral Science Foundation [2020M682711, 2020M682710, 2019M652882, 2019T120725]
  3. China Scholarship Council [201708130113, 201808130195]
  4. Guangdong Natural Science Fund for Distinguished Young Scholars [2016A030306027]
  5. Guangdong Natural Science Funds [2017A030313130]
  6. Guangzhou Science and Technology Funds [201904010078]
  7. State Key Laboratory of Pulp and Paper Engineering [2020C03]
  8. Australian Research Council (ARC) [DP160104340, DP170100436]

Ask authors/readers for more resources

Na metal is considered as a potential anode material for next-generation batteries, but its practical applications are limited due to dendrite growth and volume changes. In this study, a 3D Cu foam skeleton with hierarchical ZnO nanorod arrays was developed as a stable host for dendrite-free Na metal anodes. The sodiophilic ZnO nanorod arrays provided abundant nucleation sites for Na, resulting in homogeneous nucleation and uniform growth on the electrode, leading to dendrite-free morphology and excellent cycling stability.
Na metal is regarded as a potential anode material for next-generation Na metal batteries owing to its high theoretical capacity and low cost. However, the severe dendrite growth and infinitely volume changes of Na limit its practical applications as an anode material. In this study, a three-dimensional (3D) Cu foam skeleton with hierarchical ZnO nanorod arrays (CF@ZnO) was prepared as a stable host for dendrite-free Na metal anodes. Commercially available Cu foam was treated via a simple chemical precipitation method to grow hierarchical ZnO nanorod arrays, exhibiting a 3D porous structure with a cylindrical core-shell skeleton. The highly sodiophilic ZnO nanorod arrays provided abundant Na nucleation sites and exhibited low nucleation over-potential, which facilitated the homogeneous nucleation and uniform growth of Na on the electrode. Moreover, the 3D porous core-shell cylindrical structure of the nanorod arrays efficiently reduced the local effective current density, thus suppressing the growth of Na dendrites, as indicated by COMSOL Multiphysics simulations. As a result, the CF@ZnO electrode exhibited dendrite-free morphology during repeated Na plating/striping and excellent cycling stability with very small voltage hysteresis even at high current densities. When paired with a Na3V2(PO4)(3) cathode, the CF@ZnO/Na electrode showed significant potential for application in full cells. This study provides a facile approach to design 3D sodiophilic hosts for high-energy-density Na metal batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available