4.7 Article

Role of mariculture in the loading and speciation of mercury at the coast of the East China Sea

Journal

ENVIRONMENTAL POLLUTION
Volume 218, Issue -, Pages 1037-1044

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2016.08.055

Keywords

Aquaculture; Marine ecosystem; Mercury; Organic matter

Funding

  1. National Natural Science Foundation of China [21307114, 21577130]
  2. Innovative Team Foundation of Zhejiang Province [2013TD12]
  3. Zhejiang Provincial Public Techniques Research and Social Development Project [2015C33050]

Ask authors/readers for more resources

The effects of mariculture on mercury (Hg) contamination and speciation in water, sediment and cultured fish in a typical mariculture zone located in Xiangshan bay, Zhejiang province, east China, were studied. Water, sediment and fish samples were collected from mariculture sites (MS) and from corresponding reference sites (RS) 2500 m away from the MS. The THg concentration in overlying water in Xiangshan bay reached as high as 16.6 +/- 19.5 ng L-1, indicating that anthropogenic sources in this bay may contribution on Hg contamination in overlying water. Mariculture activities resulted in an increase in THg concentration in water from surface and bottom layers, which may be attributed to the discharge of domestic sewage and the accumulation of unconsumed fish feed and fish excreta in the benthic environment. Methylmercury (MeHg) concentrations in the bottom layer of overlying water and top surface layer of porewater underneath MS were higher than at RS, implying that mariculture activities promote Hg methylation in the interface between sediments and water. In addition, the concentrations of MeHg in sediment and porewater were significantly higher in summer than winter. It was observed that THg and MeHg contents in the muscle of blackhead seabream (Acanthopagrus schlegelii) (fed by the trash fish) were significantly higher (p < 0.001) than those in red snapper (Lutjanus campechanus) or perch (Perca fluviatilis) (fed by pellet fish feed). The THg and MeHg concentrations in the fish meat were closely related to the feeding mode, which indicate that fish feed rather than environmental media is the major pathway for Hg accumulation in fish muscle. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available