4.7 Article

Gradient 3D Printed PLA Scaffolds on Biomedical Titanium: Mechanical Evaluation and Biocompatibility

Journal

POLYMERS
Volume 13, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/polym13050682

Keywords

3D printed scaffolds; scaffold mechanical evaluation; PLA scaffolds; scaffold biocompatibility

Funding

  1. Hellenic Foundation for Research and Innovation (HFRI) [2060]

Ask authors/readers for more resources

The present investigation focused on finding solutions for crucial engineering aspects in the development of multi-layered tissue-biomimicking composites using 3D printed PLA scaffolds. The scaffolds showed promising features for orthopedic implant applications after optimization and evaluation of mechanical properties and biocompatibility.
The goal of the present investigation was to find a solution to crucial engineering aspects related to the elaboration of multi-layered tissue-biomimicking composites. 3D printing technology was used to manufacture single-layered and gradient multi-layered 3D porous scaffolds made of poly-lactic acid (PLA). The scaffolds manufacturing process was optimized after adjusting key printing parameters. The scaffolds with 60 mu m side length (square-shaped pores) showed increased stiffness values comparing to the other specimens. A silicone adhesive has been further used to join biomedical titanium plates, and the PLA scaffolds; in addition, titania nanotubes (TNTs were produced on the titanium for improved adhesion. The titanium-PLA scaffold single lap joints were evaluated in micro-tensile testing. The electrochemical processing of the titanium surface resulted in a 248% increase of the ultimate strength in the overlap area for dry specimens and 40% increase for specimens immersed in simulated body fluid. Finally, the biocompatibility of the produced scaffolds was evaluated with primary cell populations obtained after isolation from bone residual tissue. The manufactured scaffolds present promising features for applications in orthopedic implantology and are worth further.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available