4.6 Article

Residual Notch Stress Intensity Factors in Welded Joints Evaluated by 3D Numerical Simulations of Arc Welding Processes

Journal

MATERIALS
Volume 14, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/ma14040812

Keywords

coarse mesh; finite element analysis; peak stress method; residual notch stress intensity factor; residual stress; welding simulation

Ask authors/readers for more resources

The study investigates the applicability of the Peak Stress Method (PSM) using coarse meshes to estimate the Residual Notch Stress Intensity Factors (R-NSIFs) in a butt-welded joint. The results indicate that PSM based on tetra elements can effectively estimate R-NSIFs using coarse meshes and analyze complex 3D joint geometries.
Approaches based on calculating Residual Notch Stress Intensity Factors (R-NSIFs) assume the weld toe to be a sharp V-notch that gives rise to a residual singular stress distribution close to the weld toe. Once R-NSIFs are determined, they might be included in local fatigue criteria for the structural strength assessment of welded joints based on NSIFs due to external cyclic loading. However, the numerical calculation of R-NSIFs through finite element (FE) simulations of the welding process requires extremely refined meshes to properly capture the residual stress singularity. In this context, the Peak Stress Method (PSM) has recently been adopted to estimate R-NSIFs due to residual stresses by means of coarse meshes of 2D 4-node plane or 3D 8-node brick elements. The aim of this work is to investigate the applicability of the PSM to estimate R-NSIFs in a butt-welded joint using coarse meshes of 3D 10-node tetra elements. The R-NSIF distribution at the weld toe line is estimated by applying the PSM to coarse meshes of 3D 10-node tetra elements, and the results are in agreement with those obtained using 3D 8-node brick elements. Accordingly, the PSM based on tetra elements further enhances the rapid estimation of R-NSIFs using coarse meshes and could be effective in analyzing complex 3D joint geometries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available