4.8 Article

Graphene/MoS2/FeCoNi(OH)x and Graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting

Journal

NATURE COMMUNICATIONS
Volume 12, Issue 1, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/s41467-021-21742-y

Keywords

-

Funding

  1. Shenzhen Fundamental Research Program [JCYJ20170413112249615]
  2. National Natural Science Foundation of China [51272057]

Ask authors/readers for more resources

The study presents a highly efficient and stable oxygen evolution reaction catalyst with a multilayer-stacked hybrid structure for water electrolysis. The design of composite materials has improved electrocatalytic activity, offering new possibilities for water splitting.
Development of excellent and cheap electrocatalysts for water electrolysis is of great significance for application of hydrogen energy. Here, we show a highly efficient and stable oxygen evolution reaction (OER) catalyst with multilayer-stacked hybrid structure, in which vertical graphene nanosheets (VGSs), MoS2 nanosheets, and layered FeCoNi hydroxides (FeCoNi(OH)(x)) are successively grown on carbon fibers (CF/VGSs/MoS2/FeCoNi(OH)(x)). The catalyst exhibits excellent OER performance with a low overpotential of 225 and 241mV to attain 500 and 1000mAcm(-2) and small Tafel slope of 29.2mV dec(-1). Theoretical calculation indicates that compositing of FeCoNi(OH)(x) with MoS2 could generate favorable electronic structure and decrease the OER overpotential, promoting the electrocatalytic activity. An alkaline water electrolyzer is established using CF/VGSs/MoS2/FeCoNi(OH)(x) anode for overall water splitting, which generates a current density of 100mAcm(-2) at 1.59V with excellent stability over 100h. Our highly efficient catalysts have great prospect for water electrolysis. While water-splitting electrocatalysis offers a renewable means for carbon-neutral energy production, it is a challenge to design efficient, active, and stable catalysts. Here, authors prepare multilayer composite nanosheet materials as bifunctional water-splitting electrocatalysts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available