4.8 Article

The mechanism of the nucleo-sugar selection by multi-subunit RNA polymerases

Journal

NATURE COMMUNICATIONS
Volume 12, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-21005-w

Keywords

-

Funding

  1. Academy of Finland [286205]
  2. NIH [R01 GM087350, R35 GM131860]
  3. Sigrid Juselius Foundation [1702]
  4. Academy of Finland (AKA) [286205, 286205] Funding Source: Academy of Finland (AKA)

Ask authors/readers for more resources

In multi-subunit RNA polymerases, a conserved Arg residue plays a major role in selecting against deoxyribonucleoside substrates.
RNA polymerases (RNAPs) synthesize RNA from NTPs, whereas DNA polymerases synthesize DNA from 2dNTPs. DNA polymerases select against NTPs by using steric gates to exclude the 2 ' OH, but RNAPs have to employ alternative selection strategies. In single-subunit RNAPs, a conserved Tyr residue discriminates against 2 ' dNTPs, whereas selectivity mechanisms of multi-subunit RNAPs remain hitherto unknown. Here, we show that a conserved Arg residue uses a two-pronged strategy to select against 2 ' dNTPs in multi-subunit RNAPs. The conserved Arg interacts with the 2 ' OH group to promote NTP binding, but selectively inhibits incorporation of 2 ' dNTPs by interacting with their 3 ' OH group to favor the catalytically-inert 2 ' -endo conformation of the deoxyribose moiety. This deformative action is an elegant example of an active selection against a substrate that is a substructure of the correct substrate. Our findings provide important insights into the evolutionary origins of biopolymers and the design of selective inhibitors of viral RNAPs. RNA and DNA polymerases need to discriminate efficiently against closely related nucleotide triphosphate substrates. Here, the authors show that a conserved Arg residue is the major determinant of selectivity against deoxyribonucleoside substrates by multisubunit RNA polymerases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available