4.8 Article

The lytic polysaccharide monooxygenase CbpD promotes Pseudomonas aeruginosa virulence in systemic infection

Journal

NATURE COMMUNICATIONS
Volume 12, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-21473-0

Keywords

-

Funding

  1. Research Council of Norway [249865, 272201, 240967]
  2. Norwegian University of Life Sciences
  3. NIGMS [R35 GM119850]
  4. Norwegian Metacenter for High-Performance Computing [NN1003K]
  5. Proteomics Core Facility at the Norwegian University of Life Sciences, Protein-Glycan Interaction Resource of the CFG [R24-GM098791]
  6. National Center for Functional Glycomics (NCFG) at Beth Israel Deaconess Medical Center, Harvard Medical School [P41-GM103694]

Ask authors/readers for more resources

The Pseudomonas aeruginosa lytic polysaccharide monooxygenase CbpD is a chitin-oxidizing virulence factor that promotes bacterial survival in human blood, with its catalytic activity promoted by azurin and pyocyanin. Deletion of CbpD hinders the bacterium's ability to establish lethal systemic infection and leads to increased bacterial clearance. CbpD's key role in virulence is attributed to its ability to attenuate the terminal complement cascade in human serum.
The recently discovered lytic polysaccharide monooxygenases (LPMOs), which cleave polysaccharides by oxidation, have been associated with bacterial virulence, but supporting functional data is scarce. Here we show that CbpD, the LPMO of Pseudomonas aeruginosa, is a chitin-oxidizing virulence factor that promotes survival of the bacterium in human blood. The catalytic activity of CbpD was promoted by azurin and pyocyanin, two redox-active virulence factors also secreted by P. aeruginosa. Homology modeling, molecular dynamics simulations, and small angle X-ray scattering indicated that CbpD is a monomeric tri-modular enzyme with flexible linkers. Deletion of cbpD rendered P. aeruginosa unable to establish a lethal systemic infection, associated with enhanced bacterial clearance in vivo. CbpD-dependent survival of the wild-type bacterium was not attributable to dampening of pro-inflammatory responses by CbpD ex vivo or in vivo. Rather, we found that CbpD attenuates the terminal complement cascade in human serum. Studies with an active site mutant of CbpD indicated that catalytic activity is crucial for virulence function. Finally, profiling of the bacterial and splenic proteomes showed that the lack of this single enzyme resulted in substantial re-organization of the bacterial and host proteomes. LPMOs similar to CbpD occur in other pathogens and may have similar immune evasive functions. The Pseudomonas aeruginosa lytic polysaccharide monooxygenase CbpD, prevalent in clinical isolates, has been proposed to act as a virulence factor. Here, the authors combine structural work, in silico simulations, enzymatic activity and in vitro and in vivo experiments to further delineate the role of CbpD and show that its deletion renders P. aeruginosa unable to establish a lethal systemic infection, leading to enhanced bacterial clearance in a mouse model of infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available