4.7 Article

Lower Placental Leptin Promoter Methylation in Association with Fine Particulate Matter Air Pollution during Pregnancy and Placental Nitrosative Stress at Birth in the ENVIRONAGE Cohort

Journal

ENVIRONMENTAL HEALTH PERSPECTIVES
Volume 125, Issue 2, Pages 262-268

Publisher

US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE
DOI: 10.1289/EHP38

Keywords

-

Funding

  1. European Research Council [ERC2012-StG310898]
  2. Flemish Scientific Fund (FWO) [G073315N]

Ask authors/readers for more resources

BACKGROUND: Particulate matter with a diameter <= 2.5 mu m (PM2.5) affects human fetal development during pregnancy. Oxidative stress is a putative mechanism by which PM2.5 may exert its effects. Leptin (LEP) is an energy-regulating hormone involved in fetal growth and development. Objectives: We investigated in placental tissue whether DNA methylation of the LEP promoter is associated with PM2.5 and whether the oxidative/nitrosative stress biomarker 3-nitrotyrosine (3-NTp) is involved. METHODS: LEP DNA methylation status of 361 placentas from the ENVIRONAGE birth cohort was assessed using bisulfite-PCR-pyrosequencing. Placental 3-NTp (n = 313) was determined with an ELISA assay. Daily PM2.5 exposure levels were estimated for each mother's residence, accounting for residential mobility during pregnancy, using a spatiotemporal interpolation model. RESULTS: After adjustment for a priori chosen covariates, placental LEP methylation was 1.4% lower (95% CI: -2.7, -0.19%) in association with an interquartile range increment (7.5 mu g/m(3)) in second-trimester PM2.5 exposure and 0.43% lower (95% CI: -0.85, -0.02%) in association with a doubling of placental 3-NTp content. CONCLUSIONS: LEP methylation status in the placenta was negatively associated with PM2.5 exposure during the second trimester, and with placental 3-NTp, a marker of oxidative/nitrosative stress. Additional research is needed to confirm our findings and to assess whether oxidative/nitrosative stress might contribute to associations between PM2.5 and placental epigenetic events. Potential consequences for health during the neonatal period and later in life warrant further exploration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available