4.7 Article

Type I Interferon Signaling Is a Common Factor Driving Streptococcus pneumoniae and Influenza A Virus Shedding and Transmission

Journal

MBIO
Volume 12, Issue 1, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/mBio.03589-20

Keywords

influenza virus; interferon; pneumococcus; transmission

Categories

Funding

  1. U.S. Public Health Service [AI038446, AI150893]

Ask authors/readers for more resources

The study found that infection of infants with Streptococcus pneumoniae can trigger inflammatory pathways to facilitate transmission, similar to influenza virus. By activating the type I interferon response, colonization of S. pneumoniae in the upper respiratory tract increases shedding and transmission by stimulating a wide array of genes, including those involved in mucin biosynthesis. This mechanism of S. pneumoniae contagion shared with viral infection highlights the importance of the induction of IFN-I signaling in driving respiratory contagion.
The dynamics underlying respiratory contagion (the transmission of infectious agents from the airways) are poorly understood. We investigated host factors involved in the transmission of the leading respiratory pathogen Streptococcus pneumoniae. Using an infant mouse model, we examined whether S. pneumoniae triggers inflammatory pathways shared by influenza A virus (IAV) to promote nasal secretions and shedding from the upper respiratory tract to facilitate transit to new hosts. Here, we show that amplification of the type I interferon (IFN-I) response is a critical host factor in this process, as shedding and transmission by both IAV and S. pneumoniae were decreased in pups lacking the common IFN-I receptor (Ifnar1(-/-) mice). Additionally, providing exogenous recombinant IFN-I to S. pneumoniae-infected pups was sufficient to increase bacterial shedding. The expression of IFNstimulated genes (ISGs) was upregulated in S. pneumoniae-infected wild-type (WT) but not Ifnar1(-/-) mice, including genes involved in mucin type O-glycan biosynthesis; this correlated with an increase in secretions in S. pneumoniae- and IAV-infected WT compared to Ifnar1(-/-) pups. S. pneumoniae stimulation of ISGs was largely dependent on its pore-forming toxin, pneumolysin, and coinfection with IAV and S. pneumoniae resulted in synergistic increases in ISG expression. We conclude that the induction of IFN-I signaling appears to be a common factor driving viral and bacterial respiratory contagion. IMPORTANCE Respiratory tract infections are a leading cause of childhood mortality and, globally, Streptococcus pneumoniae is the leading cause of mortality due to pneumonia. Transmission of S. pneumoniae primarily occurs through direct contact with respiratory secretions, although the host and bacterial factors underlying transmission are poorly understood. We examined transmission dynamics of S. pneumoniae in an infant mouse model and here show that S. pneumoniae colonization of the upper respiratory tract stimulates host inflammatory pathways commonly associated with viral infections. Amplification of this response was shown to be a critical host factor driving shedding and transmission of both S. pneumoniae and influenza A virus, with infection stimulating expression of a wide variety of genes, including those involved in the biosynthesis of mucin, a major component of respiratory secretions. Our findings suggest a mechanism facilitating S. pneumoniae contagion that is shared by viral infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available