4.7 Article

Methane emissions from the storage of liquid dairy manure: Influences of season, temperature and storage duration

Journal

WASTE MANAGEMENT
Volume 121, Issue -, Pages 393-402

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.wasman.2020.12.026

Keywords

Methane emissions; GHG emissions; Cattle manure storage; Emissions reduction potential; Manure temperature

Funding

  1. Federal Ministry of Food and Agriculture [22025816]

Ask authors/readers for more resources

This study measured methane emissions from liquid dairy cow manure under summer and winter storage conditions, finding that methane emissions were considerably higher in summer than in winter. The results can provide insights for strategies to mitigate methane emissions from manure storage.
Methane emissions from livestock manure are primary contributors to GHG emissions from agriculture and options for their mitigation must be found. This paper presents the results of a study on methane emissions from stored liquid dairy cow manure during summer and winter storage periods. Manure from the summer and winter season was stored under controlled conditions in barrels at ambient temperature to simulate manure storage conditions. Methane emissions from the manure samples from the winter season were measured in two time periods: 0 to 69 and 0 to 139 days. For the summer storage period, the experiments covered four time periods: from 0 to 70, 0 to 138, 0 to 209, and 0 to 279 continuous days, with probing every 10 weeks. Additionally, at the end of all storage experiments, samples were placed into eudiometer batch digesters, and their methane emissions were measured at 20 degrees C for another 60 days to investigate the potential effect of the aging of the liquid manure on its methane emissions. The experiment showed that the methane emissions from manure stored in summer were considerably higher than those from manure stored in winter. CH4 production started after approximately one month, reaching values of 0.061 kg CH4 kg(-1) Volatile Solid (VS) and achieving high total emissions of 0.148 kg CH4 kg(-1) VS (40 weeks). In winter, the highest emissions level was 0.0011 kg CH4 kg(-1) VS (20 weeks). The out comes of these experimental measurements can be used to suggest strategies for mitigating methane emissions from manure storage. (c) 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available