4.3 Article

Experimental Study of Porosity Changes in Shale Caprocks Exposed to CO2-Saturated Brines I: Evolution of Mineralogy, Pore Connectivity, Pore Size Distribution, and Surface Area

Journal

ENVIRONMENTAL ENGINEERING SCIENCE
Volume 33, Issue 10, Pages 725-735

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/ees.2015.0588

Keywords

caprock; carbon sequestration; Gothic Shale; Marine Tuscaloosa; nitrogen gas adsorption; porosity

Funding

  1. United States Department of Energy [DE-FE0000730]
  2. EPA [R834387]
  3. UW School of Energy Resources
  4. Nanoscale Control of Geologic CO2 (NCGC) Center
  5. Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Science
  6. UW School of Energy Resources the Center for Advanced Energy Studies
  7. EPA [150326, R834387] Funding Source: Federal RePORTER

Ask authors/readers for more resources

Carbon capture, utilization, and storage, one proposed method of reducing anthropogenic emissions of CO2, relies on low permeability formations, such as shales, above injection formations to prevent upward migration of the injected CO2. Porosity in caprocks evaluated for sealing capacity before injection can be altered by geochemical reactions induced by dissolution of injected CO2 into pore fluids, impacting long-term sealing capacity. Therefore, long-term performance of CO2 sequestration sites may be dependent on both initial distribution and connectivity of pores in caprocks, and on changes induced by geochemical reaction after injection of CO2, which are currently poorly understood. This article presents results from an experimental study of changes to caprock porosity and pore network geometry in two caprock formations under conditions relevant to CO2 sequestration. Pore connectivity and total porosity increased in the Gothic Shale; while total porosity increased but pore connectivity decreased in the Marine Tuscaloosa. Gothic Shale is a carbonate mudstone that contains volumetrically more carbonate minerals than Marine Tuscaloosa. Carbonate minerals dissolved to a greater extent than silicate minerals in Gothic Shale under high CO2 conditions, leading to increased porosity at length scales approximate to 1m. Mineral reactions also contributed to a decrease in pore connectivity, possibly as a result of precipitation in pore throats or hydration of the high percentage of clays. This study highlights the role that mineralogy of the caprock can play in geochemical response to CO2 injection and resulting changes in sealing capacity in long-term CO2 storage projects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available