4.6 Article

Delayed Adaptive Radiation among New Zealand Stream Fishes: Joint Estimation of Divergence Time and Trait Evolution in a Newly Delineated Island Species Flock

Journal

SYSTEMATIC BIOLOGY
Volume 71, Issue 1, Pages 13-23

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/sysbio/syab014

Keywords

Adaptive radiation; Eleotridae; freshwater; Gobiomorphus; New Zealand

Funding

  1. Strategic Science Investment Fund from the Ministry of Business Innovation and Employment
  2. Waikato Regional Council, NZ

Ask authors/readers for more resources

This study presents a novel case of an island species flock of freshwater fishes with a different tempo of adaptive history than popular evolutionary model systems. The New Zealand Gobiomorphus gudgeons formed a monophyletic assemblage, but their radiation did not fully occur in freshwater habitats until more than 10 million years after the lineage invaded the islands. This shift in speciation rate was not accompanied by an acceleration in morphological evolution in the freshwater crown clade, but was correlated with changes in head pores, scales, and egg size.
Adaptive radiations are generally thought to occur soon after a lineage invades a region offering high levels of ecological opportunity. However, few adaptive radiations beyond a handful of exceptional examples are known, so a comprehensive understanding of their dynamics is still lacking. Here, we present a novel case of an island species flock of freshwater fishes with a radically different tempo of adaptive history than that found in many popular evolutionary model systems. Using a phylogenomic data set combined with simultaneous Bayesian estimation of divergence times and trait-based speciation and extinction models, we show that the New Zealand Gobiomorphus gudgeons comprise a monophyletic assemblage, but surprisingly, the radiation did not fully occupy freshwater habitats and explosively speciate until more than 10 myr after the lineage invaded the islands. This shift in speciation rate was not accompanied by an acceleration in the rate of morphological evolution in the freshwater crown clade relative to the other species, but is correlated with a reduction in head pores and scales as well as an increase in egg size. Our results challenge the notion that clades always rapidly exploit ecological opportunities in the absence of competing lineages. Instead, we demonstrate that adaptive radiation can experience a slow start before undergoing accelerated diversification and that lineage and phenotypic diversification may be uncoupled in young radiations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available