4.8 Article

Graphene Sheets with Defined Dual Functionalities for the Strong SARS-CoV-2 Interactions

Journal

SMALL
Volume 17, Issue 11, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202007091

Keywords

graphene; graphene‐ based polyglycerol sulfates; SARS‐ CoV‐ 2 inhibitor; virucidality

Funding

  1. DFG [765]
  2. Berlin University Alliance (BUA)
  3. China Scholarship Council (CSC)
  4. Projekt DEAL

Ask authors/readers for more resources

The study shows that graphene derivatives with long alkyl chains can effectively inhibit coronavirus replication by disrupting the viral envelope, and within a specific concentration range, these graphene platforms exhibit strong antiviral activity against the virus while showing low toxicity to human cells.
Search of new strategies for the inhibition of respiratory viruses is one of the urgent health challenges worldwide, as most of the current therapeutic agents and treatments are inefficient. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic and has taken lives of approximately two million people to date. Even though various vaccines are currently under development, virus, and especially its spike glycoprotein can mutate, which highlights a need for a broad-spectrum inhibitor. In this work, inhibition of SARS-CoV-2 by graphene platforms with precise dual sulfate/alkyl functionalities is investigated. A series of graphene derivatives with different lengths of aliphatic chains is synthesized and is investigated for their ability to inhibit SARS-CoV-2 and feline coronavirus. Graphene derivatives with long alkyl chains (>C9) inhibit coronavirus replication by virtue of disrupting viral envelope. The ability of these graphene platforms to rupture viruses is visualized by atomic force microscopy and cryogenic electron microscopy. A large concentration window (10 to 100-fold) where graphene platforms display strongly antiviral activity against native SARS-CoV-2 without significant toxicity against human cells is found. In this concentration range, the synthesized graphene platforms inhibit the infection of enveloped viruses efficiently, opening new therapeutic and metaphylactic avenues against SARS-CoV-2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available