4.8 Article

Interfacing Carbon Dots for Charge-Transfer Processes

Journal

SMALL
Volume 17, Issue 48, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202006005

Keywords

carbon dots; charge-transfer; donor-acceptor; functionalization

Ask authors/readers for more resources

Carbon dots (CDs) are nanosized fluorescent core-shell nanoparticles with tunable absorption and emission spectra, widely used in light-induced charge-transfer schemes and capable of incorporating new functionalities through functionalization.
Carbon dots (CDs) are a booming material and the most recent incomer in the big family of carbon nanostructures. Specifically, CDs are nanosized fluorescent core-shell nanoparticles with tunable absorption and emission spectra, with high solubility in aqueous media and common organic solvents. Herein, the origins and the development of these unique nanoscale structures are discussed, key synthetic routes are briefly described, and the utilization of CDs in light-induced charge-transfer schemes is mainly focused upon. Beyond the impact of the CD's surface on the photoluminescence properties, functionalization, by covalent or supramolecular means, permits controllable incorporation of new functionalities with novel photophysical properties. Furthermore, the dual nature of CDs as electron donating or electron accepting species, unveiled upon interfacing them with organic chromophores, highlights their potentiality in managing diverse charge-transfer processes. Novel mechanisms, such as symmetry-breaking photoinduced charge-transfer can be activated upon covalent functionalization of CDs with organic dyes. Without a doubt, participation of CDs in energy conversion schemes opens up a wide avenue that may lead to the development of novel prototype devices suitable for technological applications and related to photonics and optoelectronics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available