4.7 Article

Simulating nitrate release from an unsaturated coal waste rock dump

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 779, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.146429

Keywords

Dump chronology; Solute transport; 3-D model; Blast products; Reclamation covers

Funding

  1. Teck Resources Limited [C6874]
  2. Syncrude-NSERC Industrial Chair [428588-11]
  3. Cameco-NSERC Industrial Chair [184573]

Ask authors/readers for more resources

This study developed a three-dimensional model to investigate the release of nitrate from waste rock dumps and its impact on water quality. The model showed that considering construction history and solute transport can effectively capture the mechanisms of pollutant release from waste rock dumps.
Knowledge of the controls affecting the release of contaminants from waste rock dumps is critical for developing strategies to mitigate downstream impacts on water quality. In this study, a three-dimensional model of a large coal waste rock dump constructed in the Elk Valley, British Columbia, Canada was developed to capture the impact of construction history (1981-2012) and solute transport on nitrate (NO3-) release over a 100-year timeframe. The model consisted of 21, one-dimensional finite element models that represented the temporal evolution of the dump. Nitrate, derived from undetonated blast products, was assumed to be present at the time of waste rock placement and was simulated as a conservative species. The simulated pattern of NO3- release to the surface water receptor occurred approximately 8 years before its measured arrival. This time lag is attributed to displacement of the water within a basal alluvial aquifer by dump effluent. The simulated patterns of historic releases corrected for the 8-year time lag, compare favourably with monitoring data and suggest the dominant hydrogeological and geochemical mechanisms are captured in the model. The model indicated the flushing of NO3- from the dump should be complete by about 2042 with a peak effluent concentration of NO3- in 2008. The addition of reclamation covers to the model resulted in an immediate decrease in the annual NO3- loading rate but extended the time frame for NO3- release from the dump relative to the no cover case. The model also showed that the timing of cover placement had little impact on NO3- release relative to the no cover case due to long duration of waste rock placement (similar to 30 years) over a relatively large footprint. (C) 2021 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available