4.7 Article

Repeated exposure of Caco-2 versus Caco-2/HT29-MTX intestinal cell models to (nano)silver in vitro: Comparison of two commercially available colloidal silver products

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 754, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.142324

Keywords

Colloidal silver; Silver nanoparticles; Repeated exposure in vitro; Gut toxicity; Genotoxicity; High-resolution chemical imaging

Funding

  1. INRAE (TRANSFORM/MICA/AlimH inter-division 2018 call, NanoStress project)
  2. INRAE (AlimH division)/Region Occitanie (France) through the doctoral grant of Kevin Gillois (2017-2020)
  3. FluoGut project [INTER/ANR/18/12545362]

Ask authors/readers for more resources

The study found that two colloidal silver products, Mesosilver and AgC, exhibit different levels of gut toxicity due to the distinct forms of silver they contain. AgC, composed solely of ionic silver, showed more toxic effects on cells compared to Mesosilver, which contains a mix of AgNPs and ionic silver. The presence of mucus in the co-culture model slightly mitigated the toxic effects on cell viability.
Colloidal silver products are sold for a wide range of disinfectant and health applications. This has increased the potential for human exposure to silver nanoparticles (AgNPs) and ions (Ag+), for which oral ingestion is considered to be a major route of exposure. Our objective was to evaluate and compare the toxicity of two commercially available colloidal silver products on two human intestinal epithelial models under realistic exposure conditions. Mesosilver (TM) and AgC were characterized and a concentration range between 0.1 and 12 mu g/mL chosen. Caco-2 cells vs. co-culture of Caco-2 and mucus-secreting HT29-MTX cells (90/10) were used. Repeated exposure was carried out to determine cell viability over 18 days of cell differentiation in 24-well plates. Selected concentrations (0.1, 1, and 3 mu g/mL) were tested on cells cultured in E-plates and Transwells with the same repeated exposure regimen, to determine cell impedance, and cell viability and trans-epithelial electrical resistance (TEER), respectively. Silver uptake, intracellular localisation, and translocation were determined by CytoViva (TM), HIM-SIMS, and ICP-MS. Genotoxicity was determined on acutely-exposed proliferating Caco-2 cells by gamma H2AX immunofluorescence staining. Repeated exposure of a given concentration of AgC, which is composed solely of ionic silver, generally exerted more toxic effects on Caco-2 cells than Mesosilver (TM), which contains a mix of AgNPs and ionic silver. Due to its patchy structure, the presence of mucus in the Caco-2/HT29-MTX co-culture only slightly mitigated the deleterious effects on cell viability. Increased genotoxicity was observed for AgC on proliferating Caco-2 cells. Silver uptake, intracellular localisation, and translocation were similar. In conclusion, Mesosilver (TM) and AgC colloidal silver products show different levels of gut toxicity due to the forms of distinct silver (AgNPs and/or Ag+) contained within. This study highlights the applicability of high-resolution (chemical) imaging to detect and localize silver and provides insights into its uptake mechanisms, intracellular fate and cellular effects. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available