4.6 Article

Decoding chromaticity and luminance from patterns of EEG activity

Journal

PSYCHOPHYSIOLOGY
Volume 58, Issue 4, Pages -

Publisher

WILEY
DOI: 10.1111/psyp.13779

Keywords

chromaticity; color vision; multivariate pattern analysis; visual evoked potential

Funding

  1. National Institute of Mental Health [RO1 MH087214-08]

Ask authors/readers for more resources

Recent research suggests that scalp-recorded EEG activity contains sufficient information to accurately identify stimulus chromaticity and luminance levels, even when tested across wide variations in luminance. This indicates that EEG topography carries robust information regarding stimulus chromaticity, providing potential insights into visual perception and processing.
A long-standing question in the field of vision research is whether scalp-recorded EEG activity contains sufficient information to identify stimulus chromaticity. Recent multivariate work suggests that it is possible to decode which chromaticity an observer is viewing from the multielectrode pattern of EEG activity. There is debate, however, about whether the claimed effects of stimulus chromaticity on visual evoked potentials (VEPs) are instead caused by unequal stimulus luminances, which are achromatic differences. Here, we tested whether stimulus chromaticity could be decoded when potential confounds with luminance were minimized by (1) equating chromatic stimuli in luminance using heterochromatic flicker photometry for each observer and (2) independently varying the chromaticity and luminance of target stimuli, enabling us to test whether the pattern for a given chromaticity generalized across wide variations in luminance. We also tested whether luminance variations can be decoded from the topography of voltage across the scalp. In Experiment 1, we presented two chromaticities (appearing red and green) at three luminance levels during separate trials. In Experiment 2, we presented four chromaticities (appearing red, orange, yellow, and green) at two luminance levels. Using a pattern classifier and the multielectrode pattern of EEG activity, we were able to accurately decode the chromaticity and luminance level of each stimulus. Furthermore, we were able to decode stimulus chromaticity when we trained the classifier on chromaticities presented at one luminance level and tested at a different luminance level. Thus, EEG topography contains robust information regarding stimulus chromaticity, despite large variations in stimulus luminance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available