4.8 Article

Rapidly deployable and morphable 3D mesostructures with applications in multimodal biomedical devices

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2026414118

Keywords

deployable and morphable 3D mesostructures; Lorentz force; magnetic force; mechanically guided assembly; instability

Funding

  1. National Natural Science Foundation of China [12002189]
  2. Tsinghua University Initiative Scientific Research Program [2019Z08QCX10]
  3. Henry Fok Education Foundation [2019GQG1012]
  4. China Postdoctoral Science Foundation [2019M650649]

Ask authors/readers for more resources

This study proposes a method for achieving deformable structures at the millimeter scale using electromagnetic actuation and design strategies, overcoming challenges in traditional materials and small-scale deployable and morphable structures. By designing custom low-rigidity 3D structures, remote-controlled electromagnetic actuation can be achieved to obtain rapid, reversible deformation effects, as well as reconfigurable mesostructures.
Structures that significantly and rapidly change their shapes and sizes upon external stimuli have widespread applications in a diversity of areas. The ability to miniaturize these deployable and morphable structures is essential for applications in fields that require high-spatial resolution or minimal invasiveness, such as biomechanics sensing, surgery, and biopsy. Despite intensive studies on the actuation mechanisms and material/structure strategies, it remains challenging to realize deployable and morphable structures in high-performance inorganic materials at small scales (e.g., several millimeters, comparable to the feature size of many biological tissues). The difficulty in integrating actuation materials increases as the size scales down, and many types of actuation forces become too small compared to the structure rigidity at millimeter scales. Here, we present schemes of electromagnetic actuation and design strategies to overcome this challenge, by exploiting the mechanics-guided three-dimensional (3D) assembly to enable integration of current-carrying metallic or magnetic films into millimeter-scale structures that generate controlled Lorentz forces or magnetic forces under an external magnetic field. Tailored designs guided by quantitative modeling and developed scaling laws allow formation of low-rigidity 3D architectures that deform significantly, reversibly, and rapidly by remotely controlled electromagnetic actuation. Reconfigurable mesostructures with multiple stable states can be also achieved, in which distinct 3D configurations are maintained after removal of the magnetic field. Demonstration of a functional device that combines the deep and shallow sensing for simultaneous measurements of thermal conductivities in bilayer films suggests the promising potential of the proposed strategy toward multimodal sensing of biomedical signals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available