4.6 Article

Reliability and reproducibility of cardiac MRI quantification of peak exercise function with long-axis views

Journal

PLOS ONE
Volume 16, Issue 2, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0245912

Keywords

-

Funding

  1. Susan G. Komen Foundation [PDF17483149]
  2. Canadian Institutes of Health Research
  3. Alberta Innovates Health Solutions

Ask authors/readers for more resources

The study demonstrated that real-time, free-breathing CMR with LAX evaluation is a reliable and reproducible method for assessing both rest and peak exercise cardiac function, including GLS.
The conventional approach to cardiac magnetic resonance (CMR) involving breath holds, electrocardiography-gating, and acquisition of a short-axis (SAX) image stack, introduces technical and logistical challenges for assessing exercise left ventricular (LV) function. Real-time, free-breathing CMR acquisition of long-axis (LAX) images overcomes these issues and also enables assessment of global longitudinal strain (GLS). We evaluated the reliability of a free-breathing LAX approach compared to the standard SAX approach and the reproducibility of free-breathing LAX. LV SAX (contiguous stack) and LAX (two-chamber and four-chamber) 3T CMR cine images were acquired four times within one scan in 32 women with cardiovascular risk factors (56 +/- 10 years, 28 +/- 4 kg/m(2)) as follows: 1) resting, gated-segmented, end-expiration breath-hold; 2) resting, real-time, free-breathing; 3) test-retest set of resting, real-time, free-breathing; 4) peak exercise (incremental-to-maximum, in-magnet, stepper test), real-time, free-breathing. A second scan was performed within one week in a subset (n = 5) to determine reproducibility of peak exercise measures. Reliability and agreement of the free-breathing LAX approach with the conventional SAX approach were assessed by intraclass correlation coefficient (ICC) and Bland-Altman plots, respectively. Normal control GLS reserve was also acquired in a separate set of 12 young, healthy control women (25 +/- 4 years, 22 +/- 2 kg/m(2)) for comparison. Comparisons of LV volumes and function among all techniques at rest had good-to-excellent reliability (ICC = 0.80-0.96), and excellent reliability between peak exercise free-breathing LAX and SAX evaluations (ICC = 0.92-0.96). Higher resting heart rates with free-breathing acquisitions compared to breath-hold (mean difference, limits of agreement: 5, 1-12 beats per minute) reduced reliability for cardiac output (ICC = 0.67-0.79). Reproducibility of the free-breathing LAX approach was good-to-excellent at rest and peak exercise (ICC = 0.74-0.99). GLS exercise reserve was impaired in older women at cardiovascular risk compared to young healthy women (-4.7 +/- 2.3% vs -7.4 +/- 2.1%, p = 0.001). Real-time, free-breathing CMR with LAX evaluation provides a reliable and reproducible method to assess rest and peak exercise cardiac function, including GLS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available