4.5 Article

SLC40A1 Mediates Ferroptosis and Cognitive Dysfunction in Type 1 Diabetes

Journal

NEUROSCIENCE
Volume 463, Issue -, Pages 216-226

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2021.03.009

Keywords

type 1 diabetes; cognitive dysfunction; resting state functional magnetic resonance imaging; mRNA; lncRNA array; Slc40a1; ferroptosis

Categories

Ask authors/readers for more resources

Cognitive dysfunction often accompanies diabetes, and recent evidence suggests that ferroptosis is a key pathogenic pathway involved in this dysfunction, affecting nerve cell death as well as diseases like Alzheimer's, Huntington's, and Parkinson's.
Cognitive dysfunction often accompanies diabetes. Both hypoglycemia and hyperglycemia cause cognitive dysfunctions. However, the underlying pathophysiology remains unclear. Recent evidence show that ferroptosis primarily triggers nerve cell death, Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD). The present study aimed to investigate whether ferroptosis is a vital pathogenic pathway in diabetes-induced cognitive dysfunction. Type 1 diabetic rat model was created by intraperitoneal injection of streptozotocin (STZ). Significant cognitive dysfunction was observed in the diabetic rats as evidenced by increase in latency period to find a hidden platform and decreased cumulative time spent in the target quadrant (TQ) in the Morris water maze test. We detected the amplitude of low-frequency fluctuation (ALFF) of the BOLD (Blood Oxygenation Level-Dependent) signal using resting-state functional magnetic resonance imaging (rsfMRI). Consequently, we found that the ALFF values, as well as the T2 relaxation time of the bilateral hippocampus, were reduced in Type 1 diabetic rats. We detected Fe2+ level and lipid peroxidation products (malondialdehyde (MDA) and 4-Hydroxynonenal (4-HNE)) in the hippocampus. Mitochondria and neuron injury in the STZ-induced diabetic rats were determined using a Transmission Electron Microscope and Nissl body staining. Iron overload and ferroptosis were detected in the hippocampus. Furthermore, mRNA microarray analysis revealed 201 dysregulated mRNAs in STZ-induced type 1 diabetes (T1D). Pathway enrichment analyses indicated that differentially expressed mRNAs associated-coding genes were associated with ferroptosis. Among ferroptosis signaling pathway genes, Slc40a1 gene (ferroportin) was downregulated. We show that ferroptosis is associated with diabetic cognitive dysfunction and Slc40a1 mediates ferroptosis in T1D. (C) 2021 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available