4.7 Article

Autistic-like behavior, spontaneous seizures, and increased neuronal excitability in a Scn8a mouse model

Journal

NEUROPSYCHOPHARMACOLOGY
Volume 46, Issue 11, Pages 2011-2020

Publisher

SPRINGERNATURE
DOI: 10.1038/s41386-021-00985-9

Keywords

-

Funding

  1. American Epilepsy Society
  2. National Institutes of Health [R21NS114795, F31NS110193, R01NS090319, R01NS104897]
  3. Rodent Behavioral Core
  4. Emory University School of Medicine
  5. Emory Neuroscience NINDS Core Facilities [P30NS055077]
  6. Georgia Clinical & Translational Science Alliance of the National Institutes of Health [UL1TR002378]

Ask authors/readers for more resources

Patients with SCN8A epileptic encephalopathy present with a variety of clinical features, and a recent study found that the R1620L mutation in a mouse model is associated with behavioral abnormalities, increased seizure susceptibility, and spontaneous seizures. The mouse model provides valuable insights for better understanding SCN8A mutations and developing new therapeutic strategies.
Patients with SCN8A epileptic encephalopathy exhibit a range of clinical features, including multiple seizure types, movement disorders, and behavioral abnormalities, such as developmental delay, mild-to-severe intellectual disability, and autism. Recently, the de novo heterozygous SCN8A R1620L mutation was identified in an individual with autism, intellectual disability, and behavioral seizures without accompanying electrographic seizure activity. To date, the effects of SCN8A mutations that are primarily associated with behavioral abnormalities have not been studied in a mouse model. To better understand the phenotypic and functional consequences of the R1620L mutation, we used CRISPR/Cas9 technology to generate mice expressing the corresponding SCN8A amino acid substitution. Homozygous mutants exhibit tremors and a maximum lifespan of 22 days, while heterozygous mutants (RL/+) exhibit autistic-like behaviors, such as hyperactivity and learning and social deficits, increased seizure susceptibility, and spontaneous seizures. Current clamp analyses revealed a reduced threshold for firing action potentials in heterozygous CA3 pyramidal neurons and reduced firing frequency, suggesting that the R1620L mutation has both gain- and loss-of-function effects. In vivo calcium imaging using miniscopes in freely moving RL/+ mutants showed hyperexcitability of cortical excitatory neurons that is likely to increase seizure susceptibility. Finally, we found that oxcarbazepine and Huperzine A, a sodium channel blocker and reversible acetylcholinesterase inhibitor, respectively, were capable of conferring robust protection against induced seizures in RL/+ mutants. This mouse line will provide the opportunity to better understand the range of clinical phenotypes associated with SCN8A mutations and to develop new therapeutic approaches.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available