4.8 Article

Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries

Journal

NATURE MATERIALS
Volume 20, Issue 7, Pages 984-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41563-021-00943-2

Keywords

-

Funding

  1. Sila Nanotechnologies

Ask authors/readers for more resources

The disruptive manufacturing technology reported in this study offers reduced manufacturing costs and improved volumetric energy density in all solid cells by using solid-state electrolytes with low melting points. The promising performance characteristics of such cells present new opportunities for the accelerated adoption of ASSLBs for safer electric transportation.
All-solid-state lithium (Li) metal and lithium-ion batteries (ASSLBs) with inorganic solid-state electrolytes offer improved safety for electric vehicles and other applications. However, current inorganic ASSLB manufacturing technology suffers from high cost, excessive amounts of solid-state electrolyte and conductive additives, and low attainable volumetric energy density. Such a fabrication method involves separate fabrications of sintered ceramic solid-state electrolyte membranes and ASSLB electrodes, which are then carefully stacked and sintered together in a precisely controlled environment. Here we report a disruptive manufacturing technology that offers reduced manufacturing costs and improved volumetric energy density in all solid cells. Our approach mimics the low-cost fabrication of commercial Li-ion cells with liquid electrolytes, except that we utilize solid-state electrolytes with low melting points that are infiltrated into dense, thermally stable electrodes at moderately elevated temperatures (similar to 300 degrees C or below) in a liquid state, and which then solidify during cooling. Nearly the same commercial equipment could be used for electrode and cell manufacturing, which substantially reduces a barrier for industry adoption. This energy-efficient method was used to fabricate inorganic ASSLBs with LiNi0.33Mn0.33Co0.33O2 cathodes and both Li4Ti5O12 and graphite anodes. The promising performance characteristics of such cells open new opportunities for the accelerated adoption of ASSLBs for safer electric transportation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available