4.6 Article

End-to-end domain knowledge-assisted automatic diagnosis of idiopathic pulmonary fibrosis (IPF) using computed tomography (CT)

Journal

MEDICAL PHYSICS
Volume 48, Issue 5, Pages 2458-2467

Publisher

WILEY
DOI: 10.1002/mp.14754

Keywords

computed tomography; deep learning; idiopathic pulmonary fibrosis (IPF); optimal design

Funding

  1. NIH [NHLBI-R21-HL140465]
  2. National Human Genome Research Institute [HG006139]
  3. National Institute of General Medical Sciences [GM053275]

Ask authors/readers for more resources

This study utilizes an optimality design criterion and population-level domain knowledge to propose a new statistical method for constructing an IPF diagnostic model, focusing on patient-level IPF diagnosis.
Purpose Domain knowledge (DK) acquired from prior studies is important for medical diagnosis. This paper leverages the population-level DK using an optimality design criterion to train a deep learning model in an end-to-end manner. In this study, the problem of interest is at the patient level to diagnose a subject with idiopathic pulmonary fibrosis (IPF) among subjects with interstitial lung disease (ILD) using a computed tomography (CT). IPF diagnosis is a complicated process with multidisciplinary discussion with experts and is subject to interobserver variability, even for experienced radiologists. To this end, we propose a new statistical method to construct a time/memory-efficient IPF diagnosis model using axial chest CT and DK, along with an optimality design criterion via a DK-enhanced loss function of deep learning. Methods Four state-of-the-art two-dimensional convolutional neural network (2D-CNN) architectures (MobileNet, VGG16, ResNet-50, and DenseNet-121) and one baseline 2D-CNN are implemented to automatically diagnose IPF among ILD patients. Axial lung CT images are retrospectively acquired from 389 IPF patients and 700 non-IPF ILD patients in five multicenter clinical trials. To enrich the sample size and boost model performance, we sample 20 three-slice samples (triplets) from each CT scan, where these three slices are randomly selected from the top, middle, and bottom of both lungs respectively. Model performance is evaluated using a fivefold cross-validation, where each fold was stratified using a fixed proportion of IPF vs non-IPF. Results Using DK-enhanced loss function increases the model performance of the baseline CNN model from 0.77 to 0.89 in terms of study-wise accuracy. Four other well-developed models reach satisfactory model performance with an overall accuracy >0.95 but the benefits brought on by the DK-enhanced loss function is not noticeable. Conclusions We believe this is the first attempt that (a) uses population-level DK with an optimal design criterion to train deep learning-based diagnostic models in an end-to-end manner and (b) focuses on patient-level IPF diagnosis. Further evaluation of using population-level DK on prospective studies is warranted and is underway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available