4.7 Article

Capsules for biomedical image segmentation

Journal

MEDICAL IMAGE ANALYSIS
Volume 68, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.media.2020.101889

Keywords

Capsule network; Lung segmentation; Pre-clinical imaging; Thigh MRI segmentation

Funding

  1. NIH [R01-EB020539, R01-CA246704]

Ask authors/readers for more resources

This research extends the use of capsule networks to object segmentation tasks, introducing locally-constrained routing and transformation matrix sharing to reduce parameter burden, proposing the concept of deconvolutional capsules. The SegCaps segmentation network shows outstanding performance in experiments.
Our work expands the use of capsule networks to the task of object segmentation for the first time in the literature. This is made possible via the introduction of locally-constrained routing and transformation matrix sharing, which reduces the parameter/memory burden and allows for the segmentation of objects at large resolutions. To compensate for the loss of global information in constraining the routing, we propose the concept of deconvolutional capsules to create a deep encoder-decoder style network, called SegCaps. We extend the masked reconstruction regularization to the task of segmentation and perform thorough ablation experiments on each component of our method. The proposed convolutional-deconvolutional capsule network, SegCaps, shows state-of-the-art results while using a fraction of the parameters of popular segmentation networks. To validate our proposed method, we perform experiments segmenting pathological lungs from clinical and pre-clinical thoracic computed tomography (CT) scans and segmenting muscle and adipose (fat) tissue from magnetic resonance imaging (MRI) scans of human subjects' thighs. Notably, our experiments in lung segmentation represent the largest-scale study in pathological lung segmentation in the literature, where we conduct experiments across five extremely challenging datasets, containing both clinical and pre-clinical subjects, and nearly 2000 computed-tomography scans. Our newly developed segmentation platform outperforms other methods across all datasets while utilizing less than 5% of the parameters in the popular U-Net for biomedical image segmentation. Further, we demonstrate capsules' ability to generalize to unseen handling of rotations/reflections on natural images. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available