4.8 Article

Protein-protected metal nanoclusters as diagnostic and therapeutic platforms for biomedical applications

Journal

MATERIALS TODAY
Volume 66, Issue -, Pages 159-193

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.mattod.2020.10.027

Keywords

-

Ask authors/readers for more resources

The use of protein templates for controlled synthesis of inorganic nanostructures is gaining attention in various fields for their biocompatibility and programmability. Protein-coated metal nanoclusters (MNCs) show potential for applications in nanoprobes, nanodevices, chemosensing, and biosensing. This review discusses the different types of protein templates used, their optoelectronic properties, and various applications, including fluorescence-based imaging, nanotherapeutics, and controlled drug release.
The use of protein templates for the controlled synthesis of inorganic nanostructures has gained considerable attention in multidisciplinary fields, including electronics, optics, energy, sensing, and biomedicine, owing to their biocompatibility and structural programmability. The possible synergistic combination of protein scaffolds (and other biomolecules/biopolymers) with metal nanoclusters (MNCs) has created a new class of highly photoluminescent nanoprobes and nanodevices. For the first time, we will discuss the different types of protein templates used for MNC preparation with an emphasis on their optoelectronic properties for application. In particular, applications of protein-coated MNCs for chemosensing or biosensing of cancer biomarkers, neurotransmitters, pathogenic microorganisms, biomolecules, pharmaceutical compounds, and immunoassays are discussed in detail herein. Fluorescence-based and multimodal molecular imaging, both in vitro and in vivo based on functional proteins are also covered. Furthermore, we discuss the burgeoning growth of protein-coated MNCs (e.g., gold (Au) and silver (Ag) NCs) to develop synergistic nanotherapeutics with potential biomedical applications in chemotherapy, radiotherapy, photodynamic therapy (PDT), photothermal therapy (PTT), and antibacterial activity, as well as MNC-containing nanocomposites for enhanced bioimaging and controlled drug release. Overall, the proposed review highlights the recent progress, technical challenges and new horizons in this field, and summarizes our understanding of how MNC properties interact with the biological function of protein scaffolds to develop synergistic nanother-apeutics towards clinical translation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available