4.7 Article

Effects of vanadium concentration on mechanical properties of VxNbMoTa refractory high-entropy alloys

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2021.140848

Keywords

Refractory high-entropy alloys (RHEAs); Mechanical properties; Solid solution strengthening; Strain hardening; Activation energy

Funding

  1. National Natural Science Foundation of China (NSFC) [51804032]

Ask authors/readers for more resources

For refractory high-entropy alloys VxNbMoTa, increasing the V concentration can lead to improved yield strength and ductility at room temperature. The fracture morphologies of VxNbMoTa also change with increasing V content, transitioning from intergranular to transgranular. Additionally, high vanadium alloys show better ductility due to refined grains and reduced impurities and brittle compounds at the grain boundary, as revealed by atom probe tomography.
Mechanical properties and strengthening, deformation, and/or fracture mechanisms of refractory high-entropy alloys VxNbMoTa are investigated. At room temperature, both the yield strength and ductility of VxNbMoTa are greatly improved when increasing the V concentration, which can be related to the enhanced solid solution strengthening and the grain refinement. The fracture morphologies of VxNbMoTa experience the intergranular-to-transgranular transition as increasing the V content. The better ductility of high vanadium alloys should attribute to the refined grains and reduced impurities and brittle compounds at the grain boundary as revealed by atom probe tomography. At 800 degrees C and 1000 degrees C, the VxNbMoTa alloys of higher V concentrations exhibit weaker strain hardening rates, while this is opposite at room temperature. This can be explained by the decreased activation energy of hot deformation as increasing the V concentration at elevated temperatures, as indicated by flow stress analyses using the strain-compensated Arrhenius-type model with improved predictability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available