4.6 Article

The impact of polymer additive for N95 masks on gamma-ray attenuation properties

Journal

MATERIALS CHEMISTRY AND PHYSICS
Volume 260, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.matchemphys.2020.124093

Keywords

MAC; HVL Z(eff); EBF-EABF; N95 masks

Ask authors/readers for more resources

This study explores the effectiveness of gamma rays attenuation of various N95 respirator samples by analysing theoretical parameters and found that the N2 sample has the best performance in terms of radiation attenuation.
This article explores the effectiveness of gamma rays attenuation of various N95 respirator samples by analysing several theoretical parameters such as the Effective Atomic Numbers (Z(eff)), Half Value Layer (HVL), Mean Free Path (MFP), Mass Attenuation Coefficients (MAC), Tenth Value Layer (TVL), Exposure Build Up Factors (EBF) and Energy Absorption Build Up Factors (EABF). For the selected N95 mask samples, the MAC values corresponding to the energy levels between 0.015 and 20 MeV are measured using the WinXCOM software and the MATLAB code. The parameters including Z(eff), TVL, HVL, and MFP are computed using the MAC values derived from the WinXCOM program. EBF and EABF are computed in relation to the penetration depth and incident photon energy by using the (G-P) fitting approximation in estimating the photon build-up factor. The findings showed that having the lowest TVL, HVL, and MFP, the N2 sample has the best output in terms of radiation attenuation purposes. In conclusion, the N2 sample which outperforms other samples is the most promising mask sample when it comes to gamma-ray attenuation features.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available