4.7 Article

Forward numerical modelling constraining environmental parameters (Aptian carbonate system, E Iberia)

Journal

MARINE AND PETROLEUM GEOLOGY
Volume 124, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.marpetgeo.2020.104822

Keywords

Carbonate production; Sea-level change; Environmental parameters; Forward modelling; Process-based modelling

Funding

  1. I + D + i research project (MINECO, FEDER, EU) [CGL2015-60805-P, CGL-2017-85532-P]
  2. Grup de Recerca Reconegut per la Generalitat de Catalunya [2017 SGR 824]
  3. Geodynamics and Basin Analysis Group (GGAC) [2017SGR596]

Ask authors/readers for more resources

The evolution of an Aptian carbonate system was studied using a 3D process-based sedimentary-stratigraphic forward model, revealing that fluctuations in relative sea level exerted the main control on resulting stratigraphic and facies architectures, while the influence of terrigenous clastic sediment input was less pronounced. The study highlights the sensitivity of facies assemblages to different controlling parameters, emphasizing the importance of understanding these factors for accurate geological modeling and prediction.
The facies distribution in time and space of sedimentary successions is controlled by a complex interplay between physical, chemical and biological processes, which are nowadays difficult to construe from the geological record. Numerical models constitute a valuable tool to identify and quantify such controlling factors permitting a reliable 3D extrapolation and prediction of stratigraphic and facies architectures beyond outcropping rock strata. This study assesses the roles of three controlling parameters being carbonate production rate, relative sea-level changes and terrigenous clastic sediment supply, on the evolution of an Aptian carbonate system. The SIMSAFADIM-CLASTIC, a 3D process-based sedimentary-stratigraphic forward model, was used for this evaluation. The carbonate succession modelled crops out in the western Maestrat Basin (E Iberia), and corresponded to a platform-to-basin transition comprising three depositional environment-related facies assemblages: platform top, slope and basin. Testing of geological parameters in forward modelling results in a wide range of possible 3D geological scenarios. The documented distribution of facies and sequence-stratigraphic framework combined with a virtual outcrop model were used as a reference to perform geometric (quantitative) and architectural and stacking pattern (qualitative) research by model-data comparison. The time interval modelled spans 1450 ky. The best-fit simulation run characterizes and quantifies (1) relative sea-level fluctuations recording five different genetic types of deposit (systems tracts) belonging to two depositional sequences as expected from field-data analysis, (2) a rate of terrigenous clastic sediment input ranging between 0.5 and 2.5 gr/s, and (3) a mean autochthonous carbonate production maximum rate of 0.08 m/ky. Furthermore, the quantitative and qualitative sensitivity tests carried out highlight that the fluctuation of relative sea level exerted the main control on the resulting stratigraphic and facies architectures, whereas the effect of inflowing terrigenous clastic sediment is less pronounced. Facies assemblages show different sensitivities to each parameter, being the slope carbonates more sensitive than the platform top facies to inflowing fine terrigenous sediments. On slope depositional settings, siliciclastic input also controls stratal stacking patterns and the dimensions of the carbonate bodies formed. The final 3D model allows to spot architectural features such as stacking patterns that can be misinterpreted by looking at the resulting record in the outcrop or by using other 2D approaches, and facilitates the comprehension of reservoir connectivity highlighting the occurrence of initial disconnected regressive platforms, which were later connected during a transgressive stage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available