4.4 Article

Unconventional circularly polarized Airy light-sheet spinner tweezers

Publisher

Optica Publishing Group
DOI: 10.1364/JOSAA.418743

Keywords

-

Categories

Ask authors/readers for more resources

The article introduces the synthesis of standard circularly polarized Airy light-sheets by combining TE and TM wave fields, and theoretically demonstrates the existence of unconventional circularly polarized Airy light-sheets. The study explores the impact of light polarization on particle motion.
Standard circularly polarized Airy light-sheets are synthesized by combining two dephased TE and TM wave fields, polarized in the transverse directions of wave propagation, respectively. Somewhat counterintuitively, the present analysis theoretically demonstrates the existence of unconventional circularly polarized Airy light-sheets, where one of the individual dephased wave fields is polarized along the direction of wave propagation. The vector angu-lar spectrum decomposition method in conjunction with the Lorenz gauge condition and Maxwell's equations allow adequate determination of the Cartesian components of the incident radiated electric field components. Subsequently, the Cartesian components of the optical time-averaged radiation force and torque can be determined and computed. The example of a subwavelength light-absorptive (lossy) dielectric sphere is considered based upon the dipole approximation method. The results demonstrate the emergence of negative force components, suggesting retrograde motion and spinning reversal depending on the polarization of the Airy light-sheet and its transverse scale and attenuation parameter. The results are important in the design of light-sheet spinner tweezers and applications involving optical switching and particle manipulation and rotation. (C) 2021 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available