4.8 Article

Chlorophyll Derivative-Sensitized TiO2 Electron Transport Layer for Record Efficiency of Cs2AgBiBr6 Double Perovskite Solar Cells

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 143, Issue 5, Pages 2207-2211

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.0c12786

Keywords

-

Funding

  1. National Natural Science Foundation of China [11974129]
  2. Japan Society for the Promotion of Science (JSPS) [JP17H06436]

Ask authors/readers for more resources

In this study, a carboxy-chlorophyll derivative (C-Chl) was introduced as a sensitizer to enhance the performance of Cs2AgBiBr6-based perovskite solar cells. The optimized device achieved a significantly improved power conversion efficiency (PCE) exceeding 3% for the first time, with enhanced short-circuit current density and improved stability. The introduction of C-Chl was found to reduce defects, accelerate electron extraction, and suppress charge recombination at the interface, leading to the enhanced overall performance of the solar cells.
The power conversion efficiency (PCE) of Cs2AgBiBr6-based perovskite solar cells (PSCs) is still low owing to the inherent defects of Cs2AgBiBr6 films. Herein, we demonstrate a carboxy-chlorophyll derivative (C-Chl)-sensitized mesoporous TiO2 (m-TiO2) film as an electron transport layer (ETL) to enhance and extend the absorption spectrum of Cs2AgBiBr6-based PSCs. The C-Chl-based device achieves a significantly improved PCE, exceeding 3% for the first time, with an increase of 27% in short-circuit current density. Optoelectronic investigations confirm that the introduction of C-CM reduces the defects, accelerates the electron extraction, and suppresses charge recombination at the interface of ETL/perovskite. Moreover, the unencapsulated PSCs display restrained hysteresis and great stability under ambient conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available