4.8 Article

Desymmetric Enantioselective Reduction of Cyclic 1,3-Diketones Catalyzed by a Recyclable P-Chiral Phosphinamide Organocatalyst

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 143, Issue 7, Pages 2994-3002

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.1c00277

Keywords

-

Funding

  1. National Natural Science Foundation of China [22071235]

Ask authors/readers for more resources

The P-stereogenic phosphinamides have been demonstrated as powerful organocatalysts for the desymmetric enantioselective reduction of cyclic 1,3-diketones, providing a useful method for the synthesis of chiral cyclic 3-hydroxy ketones. The protocol shows a broad substrate scope and high enantioselectivities and diastereoselectivities for the chiral cyclic 3-hydroxy ketone products. Mechanistic studies revealed that an intermediate formed from P-stereogenic phosphinamide and catecholborane is the real catalytically active species, which paves the way for designing and developing other reactions using P-stereogenic phosphinamides as new organocatalysts.
The P-stereogenic phosphinamides are a structurally novel skeletal class which has not been investigated as chiral organocatalysts. However, chiral cyclic 3-hydroxy ketones are widely used as building blocks in the synthesis of natural products and bioactive compounds. However, general and practical methods for the synthesis of such chiral compounds remain underdeveloped. Herein, we demonstrate that the P-stereogenic phosphinamides are powerful organocatalysts for the desymmetric enantioselective reduction of cyclic 1,3-diketones, providing a useful method for the synthesis of chiral cyclic 3-hydroxy ketones. The protocol displays a broad substrate scope that is amenable to a series of cyclic 2,2-disubstituted five- and six-membered 1,3-diketones. The chiral cyclic 3-hydroxy ketone products bearing an all-carbon chiral quaternary center could be obtained with high enantioselectivities (up to 98% ee) and diastereoselectivities (up to 99:1 dr). Most importantly, the reactions could be practically performed on the gram scale and the catalysts could be reused without compromising the catalytic efficiency. Mechanistic studies revealed that an intermediate formed from P-stereogenic phosphinamide and catecholborane is the real catalytically active species. The results disclosed herein bode well for designing and developing other reactions using P-stereogenic phosphinamides as new organocatalysts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available