4.6 Article

Magnetic particles encoding a suspension probe for ultra-sensitive and quantitative determination of atrazine

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.jpba.2020.113868

Keywords

Magnetic suspension array; homogeneous reaction system; Atrazine; Herbicide

Funding

  1. National Natural Science Foundation of China [81703699, 81573595]
  2. CAMS Innovation Fund for Medical Sciences [2017-I2M-1-013]
  3. National Science and Technology Major Project [2018ZX09721004-010]

Ask authors/readers for more resources

The study presented a method utilizing magnetic microsphere-based suspension probes for detecting atrazine in herbs, achieving sensitive and rapid detection without interference from complex matrices.
As a highly toxic and widely used herbicide, atrazine poses a serious threat to food safety as well as overall environmental and human health. Due to complex matrix interference and the difficulty of signal enrichment, there is an urgent need for a convenient, fast, and ultrasensitive method that detects trace atrazine without concern for matrix effects. Here, we provide the first account of a sensitive and rapid suspension probe based on magnetic microspheres used to detect atrazine in herbs. The self-made magnetic beads featured -COOH groups and were used as the carrier to construct immunofluorescent probes. These probes then conjugated with the atrazine antigen through an activated ester method, ultimately binding to the antibody. Homogeneous detection was ensured using flow cytometry and the microflow optical channel along with allophycocyanin-conjugated goat-anti-mouse secondary antibody (APC-IgG-SecAb) as the fluorescent signal. The magnetic suspension probe allowed for high target enrichment and the inherent two-dimensional selective detection of flow cytometry effectively avoided any matrix interference. This method had good linearity across 1.69-23.19 ng mL(-1). The IC50 and LOD values were 4.81 ng mL(-1) and 0.95 ng mL(-1), respectively; the sensitivity was increased three-fold relative to ELISA. After complete optimization, 2-N-morpholinoeth-anesulfonic acid was used as the coupling solution and maintained good mono-dispersity, stability, and reactivity for the labelled microspheres during the process. The entire experiment was simple, and effectively used reagents; moreover, both the labor required and detection time were greatly reduced. Critically, the strategy presented here greatly reduced interference from complex matrices, and saved preparation for matrix-matched solutions when different herbs were screened. Overall, this strategy was sensitive, rapid, eco-friendly, and labor-saving; collectively, these attributes make it well-suited for on-site screening of atrazine contamination and will allow for increased food safety. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available