4.7 Review

Review on nickel-based adsorption materials for Congo red

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 403, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.123559

Keywords

Nickel-based adsorbents; Congo red; Adsorption; Mechanism

Funding

  1. NSFC [21433007, 21573170, U1705251]
  2. National Key Research and Development Program of China [2018YFB1502001]
  3. Innovative Research Funds of SKLWUT [2017-ZD-4]

Ask authors/readers for more resources

The excessive presence of synthetic dyestuffs in aquatic environments can lead to ecological and health issues that are harmful to sustainable development. Adsorption is considered an effective method for removing dye pollutants from water due to its efficiency, cost-effectiveness, ease of operation, and lack of secondary pollution. Among various dyes, Congo red is a commonly used azo dye. Nickel-based materials have been extensively studied for Congo red adsorption due to their diverse morphology, large specific surface area, and strong affinity towards Congo red. However, the challenge remains in creating nickel-based adsorbents with high efficiency, stability, and recyclability for practical applications.
Excessive synthetic dyestuffs in the aquatic environment pose various ecological and health issues that are detrimental to sustainable development. Adsorption is considered a feasible technique of eliminating dye pollutants from the water environment because of its advantages of high efficiency, low cost, easy operation, and absence of secondary pollution. Among the many dyes, Congo red (CR) is a widely used azo dye. Nickel-based materials, including nickel hydroxide, nickel oxide, nickel-containing layered double hydroxides, nickel-based spinel and metal-organic frameworks, metallic nickel, nickel-based sulfide, and nickel composites, have been extensively studied for CR adsorption due to their morphological diversity, large specific surface area, and strong affinity toward CR. However, fabricating nickel-based adsorbents with high efficiency and stability and excellent recyclability for practical application remains a challenge. This review outlines the research progress of nickel based materials in CR adsorption. The interaction between CR molecules and nickel-based adsorbents is systematically presented, and the possible adsorption mechanisms are summarized. Finally, the challenges and future development directions of the practical application of nickel-based adsorbent materials are proposed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available