4.7 Article

Competing Marangoni and Rayleigh convection in evaporating binary droplets

Journal

JOURNAL OF FLUID MECHANICS
Volume 914, Issue -, Pages -

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2020.734

Keywords

Marangoni convection; buoyancy-driven instability; drops

Funding

  1. Canon Production Printing Holding B.V.
  2. University of Twente
  3. Eindhoven University of Technology
  4. ERC-Advanced Grant DDD [740479]

Ask authors/readers for more resources

Recent studies have shown that in evaporating binary sessile and pendant droplets, gravity and natural convection can be the dominant driving mechanisms for flow. A quasi-stationary model has been derived and validated to predict the prevalence and intriguing interaction of Rayleigh and/or Marangoni convection based on a phase diagram for the flow field expressed in terms of the Rayleigh and Marangoni numbers.
For a small sessile or pendant droplet it is generally assumed that gravity does not play any role once the Bond number is small. This is even assumed for evaporating binary sessile or pendant droplets, in which convective flows can be driven due to selective evaporation of one component and the resulting concentration and thus surface tension differences at the air-liquid interface. However, recent studies have shown that in such droplets gravity indeed can play a role and that natural convection can be the dominant driving mechanism for the flow inside evaporating binary droplets (Edwards et al., Phys. Rev. Lett., vol. 121, 2018, 184501; Li et al., Phys. Rev. Lett., vol. 122, 2019, 114501). In this study, we derive and validate a quasi-stationary model for the flow inside evaporating binary sessile and pendant droplets, which successfully allows one to predict the prevalence and the intriguing interaction of Rayleigh and/or Marangoni convection on the basis of a phase diagram for the flow field expressed in terms of the Rayleigh and Marangoni numbers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available