4.7 Article

Three-dimensional hierarchical core-shell CuCo2O4@Co(OH)2 nanoflakes as high-performance electrode materials for flexible supercapacitors

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 586, Issue -, Pages 797-806

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2020.11.004

Keywords

Electrodeposition technique; Core-shell CuCo2O4@Co(OH)(2); Ultrathin Co(OH)(2) nanosheets; Flexible supercapacitors

Funding

  1. National Natural Science Foundation of China [21405105]
  2. Shanghai Natural Science Foundation [14ZR1429300]
  3. State Key Laboratory of Green Catalysis of Sichuan Institutes of Higher Education [LZJ1703]

Ask authors/readers for more resources

The rational design of composite electrode materials with novel nanostructures has led to the successful synthesis of three-dimensional hierarchical core-shell CuCo2O4@Co(OH)(2) nanoflakes, which can improve the electrochemical performance of supercapacitors, exhibiting higher specific capacitance and lower resistance, and showing excellent performance in flexible and wearable supercapacitors.
Rational design of composite electrode materials with novel nanostructures plays an important role in improving both high energy density and structure stability of flexible and wearable supercapacitors. Herein, numerous peculiar three-dimensional hierarchical core-shell CuCo2O4@Co(OH)(2) nanoflakes directly grown on Ni foam are synthesized via a facile hydrothermal method and subsequent electrodeposition technique. Ultrathin Co(OH)(2) nanosheets arrays vertically anchored on CuCo2O4 nanoflakes can not only improve the electrical conductivity, but also provide interconnected channels for ion diffusion and enrich electrochemical active sites to boost faradaic redox reaction, leading to the enhanced electrochemical behavior. Excellent electrochemical performance of CuCo2O4@Co(OH)(2) electrode can be reflected on a higher specific capacitance of 1558 F/g and lower resistance compared with that of the pristine CuCo2O4 electrode. The asymmetric flexible supercapacitor assembled by the optimized CuCo2O4@Co (OH)(2) electrode and activated carbon exhibits high energy density of 62.5 Wh/kg at 893 W/kg, outstanding cycle stability of 88.6% capacitance retention after 10,000 cycles and remarkable mechanical flexibility, performing the best electrochemical behavior among various metal oxides based asymmetric supercapacitors. All above results indicate that the resulted hierarchical core-shell CuCo2O4@Co(OH)(2) electrode can be a promising candidate for flexible energy storage devices. (C) 2020 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available