4.7 Article

On the role of hydrogen-bond exchanges in the spectral diffusion of water

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 154, Issue 6, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/5.0041270

Keywords

-

Funding

  1. National Science Foundation [CHE-1800559]
  2. National Science Foundation Graduate Research Fellowship [1540502, 1451148]
  3. National Science Graduate Research Opportunities Worldwide Program

Ask authors/readers for more resources

The study provides a detailed analysis of the time scales and activation energies associated with spectral diffusion in water molecules. The results show that the longest time scale of spectral diffusion is not directly related to hydrogen-bond exchanges, with the dominant contribution coming from hydrogen-bond rearrangements. The study highlights the complexity of the dynamics involved in hydrogen bonds in isotopically dilute water.
The dynamics of a vibrational frequency in a condensed phase environment, i.e., the spectral diffusion, has attracted considerable interest over the last two decades. A significant impetus has been the development of two-dimensional infrared (2D-IR) photon-echo spectroscopy that represents a direct experimental probe of spectral diffusion, as measured by the frequency-frequency time correlation function (FFCF). In isotopically dilute water, which is perhaps the most thoroughly studied system, the standard interpretation of the longest timescale observed in the FFCF is that it is associated with hydrogen-bond exchange dynamics. Here, we investigate this connection by detailed analysis of both the spectral diffusion timescales and their associated activation energies. The latter are obtained from the recently developed fluctuation theory for the dynamics approach. The results show that the longest timescale of spectral diffusion obtained by the typical analysis used cannot be directly associated with hydrogen-bond exchanges. The hydrogen-bond exchange time does appear in the decay of the water FFCF, but only as an additional, small-amplitude (<3%) timescale. The dominant contribution to the long-time spectral diffusion dynamics is considerably shorter than the hydrogen-bond exchange time and exhibits a significantly smaller activation energy. It thus arises from hydrogen-bond rearrangements, which occur in between successful hydrogen-bond partner exchanges, and particularly from hydrogen bonds that transiently break before returning to the same acceptor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available