4.6 Article

Smurf2 exerts neuroprotective effects on cerebral ischemic injury

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 297, Issue 2, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jbc.2021.100537

Keywords

-

Ask authors/readers for more resources

The study aimed to investigate the neuroprotective role of Smurf2 in cerebral ischemic injury by inactivating the YY1/HIF1α/DDIT4 axis, showing that downregulation of Smurf2 and upregulation of YY1, HIF1α, and DDIT4 contribute to apoptosis and cerebral infarction in both MCAO mice and OGD-treated neurons.
The present study aimed to explore specific mechanisms involved in mediating the neuroprotective effects of Smad ubiquitination regulatory factor 2 (Smurf2) in cerebral ischemic injury. A middle cerebral artery occlusion (MCAO) mouse model and an oxygen-glucose deprivation (OGD)-treated neuron model were developed. The expression of Smurf2, Yin Yang 1 (YY1), hypoxia-inducible factor-1 alpha (HIF1 alpha), and DNA damage-inducible transcript 4 gene (DDIT4) was analyzed. Thereafter, the expression of Smurf2, YY1, HIF1 alpha, and DDIT4 was altered in the MCAO mice and OGD-treated neurons. Apoptosis in tissues and cerebral infarction were assessed. In neurons, the expression of apoptosis-related proteins, viability, and apoptosis were assessed, followed by evaluation of lactate dehydrogenase leakage rate. The interaction between Smurf2 and YY1 was analyzed by coimmunoprecipitation assay and that between YY1 ubiquitination by in vivo ubiquitination experiment. The results showed downregulation of Smurf2 and upregulation of YY1, HIF1 alpha, and DDIT4 in both MCAO mice and OGD-treated neurons. Smurf2 elevated YY1 ubiquitination and degradation, and YY1 increased HIF1 alpha expression to promote DDIT4 in neurons. Overexpressed Smurf2 or down-regulated YY1, HIF1 alpha, or DDIT4 reduced the volume of cerebral infarction and apoptosis in MCAO mice, while enhancing cell viability and reducing apoptosis and lactate dehydrogenase leakage in OGD-treated neurons. In summary, our findings elucidated a neuroprotective role of Smurf2 in cerebral ischemic injury via inactivation of the YY1/HIF1 alpha/DDIT4 axis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available