4.7 Article

Local hydrogen accumulation after cold forming and heat treatment in punched advanced high strength steel sheets

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 856, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2020.158226

Keywords

Hydrogen embrittlement; Punched edge; Local Hydrogen concentration; Diffusion simulation; Advanced high strength steels

Funding

  1. COMET program within the K2 Center Integrated Computational Material, Process and Product Engineering (IC-MPPE) [859480]
  2. Austrian Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology (BMK)
  3. Austrian Federal Ministry for Digital and Economic Affairs (BMDW)

Ask authors/readers for more resources

Hydrogen embrittlement is a critical issue in the application of advanced high strength steel sheets, especially in severe plastic deformation at punched edges. By investigating two industrial AHSS, it was found that hydrogen accumulates in the shear affected zone, leading to the development of a simplified two-zone model to estimate local hydrogen concentration in punched AHSS sheets.
Hydrogen embrittlement is one of the most crucial problems in the application of advanced high strength steel (AHSS) sheets for the automotive industry. Especially, the severe plastic deformation in punched edges makes the components susceptible to hydrogen assisted cracking (HAC). While small amounts of hydrogen are measured in the bulk material, hydrogen concentration increases in the micrometer-sized shear affected zone many times, along with severe plastic deformation. To contribute to the understanding of local microstructure and local stress states on the hydrogen accumulation in the shear affected zone, two industrial AHSS were investigated. Both steels had the same ultimate tensile strength of 1200 MPa, but different uniform elongations. High-pressure torsion (HPT) deformed samples were used to represent the material state in the shear affected zone. Thermal desorption spectroscopy (TDS), X-ray diffraction (XRD), magnetic retained austenite measurements and electron backscattering diffraction (EBSD) in a high resolution secondary electron microscopy (SEM) were applied among other techniques to gain more insights with microstructural resolution. The hydrogen analysis results of the HPT samples were correlated with the local hydrogen trapping capacity in punched edges. Finally, a simplified two-zone model considering the bulk and punched edge as separate zones was developed in order to estimate the local hydrogen concentration of punched AHSS sheets as a function of hydrogen bulk concentration. In a concluding remark it is shown, that the effect of the hydrostatic stress field as trap site is negligibly small compared to other traps. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available